Doubled geometry and string theory

Cecilia Albertsson

Yukawa Institute for Theoretical Physics Kyoto University

6 January, 2009

- ★ Introduction
- ★ T-folds
- ★ Doubled formalism
- ★ D-branes
- ★ Comparison with generalised geometry

Introduction

String theory needs 10 dim

- → Compactify on 6-dim space to get 4-dim theory
 - Massless scalars parameterising internal space

But no massless scalars in nature

→ make scalars massive: Moduli stabilization

Moduli stabilization

Turn on background fluxes on internal space

potential that stabilises moduli & generates mass

But:

T-duality leads to non-geometric spaces

- OK, because some of them are consistent string backgrounds

Ex: T-folds, asymmetric orbifolds

Hull '04: Doubled formalism

Geometric description of T-folds Transition functions in T-duality group

Generalise → Doubled geometry [Hull '06] Geometric description of more general non-geometric spaces

Doubled geometry

Includes all T-duals of a given nonlinear sigma model, in a single description.

Involves constructing a "doubled space" & a "doubled sigma model".

From this obtain the (mutually dual) physical models.

→ Better understanding of T-duality?

Take torus fibration M:

General background tensor:

 $E_{ij} = G_{ij} + B_{ij}$

(legs along fibres, independent of fibre coords)

T-folds

General background tensor:

 $E_{ij} = G_{ij} + B_{ij}$

(legs along fibres, independent of fibre coords)

• For **geometric** transition functions: $h \in GL(d;\mathbb{Z})$

(large diffeomorphisms on T^d)

In overlap $U \cap U'$ of patches on base: $E' = h E h^T$

• For **non**-geometric transition functions:

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in O(d,d;\mathbb{Z})$$

(T-duality symmetry on T^d fibration)

$$\rightarrow \text{ g preserves } L = \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix}$$

In overlap of patches on base: $E' = (a E + b) (c E + d)^{-1}$ \downarrow mixes G & B T-duality monodromy around non-contractible loop in the base \rightarrow T-fold = mondrofold Ex: N = S¹, Y ~ Y + 2\pi

⇒ $E(Y + 2\pi) = (a E(Y) + b) (c E(Y) + d)^{-1}$

T-folds arise as T-duals of flux compactifications:

• Example of T-fold: The mirror of a Calabi-Yau with NS-NS flux on its T³ fibres

 Analogously can construct S-folds (S-duality), U-folds (U-duality) and mirror-folds (mirror symmetry).

Doubled formalism

String theory compactified on T^d:

The T-dual of T^d is also a T^d

Natural to formulate as string theory on target space T^{2d} with O(d,d;Z) T-duality acting on its coordinates X, X

Degrees of freedom are doubled: $\{X\} \rightarrow \{X, \tilde{X}\} \equiv \{X\}$

 $dX_L =$

→ Impose constraint:

*
$$dX_L$$
 $dX_R = - *dX_R$ worldsheet

$$\rightarrow \begin{cases} dX = *d\tilde{X} \\ d\tilde{X} = *dX \end{cases}$$
 Self-duality constraint

$$\rightarrow Usual T-duality transformations \end{cases}$$

Defines natural O(d,d) invariant metric L on T^{2d}: {X} and { \widetilde{X} } spaces are *maximally null* w.r.t. $L = \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix}$ T-duality group $O(d,d;\mathbb{Z}) \subset GL(2d) = \text{group of large}$ diffeomorphisms of T^{2d}

→ The T-duality monodromy of T^d over N has become a geometric transition function for T^{2d} over N.

 \rightarrow The new space is a T^{2d} fibration over N.

Polarisation

To recover physical target space (the T-fold), introduce projectors:

$$\Pi = \frac{1}{2}(1 + R)$$

projects to physical space

 $\widetilde{\Pi} = \frac{1}{2} (1 - R)$

projects to dual space

R = product structure on T^{2d} fibres: $R^2 = 1$

→ Splits tangent space into ±1 eigenspaces of R

Necessary properties of R:

★ $R \in GL(2d; \mathbb{Z})$

★ Metric L is pseudo-hermitian w.r.t. R: $L_{IK} R^{K}_{J} + L_{JK} R^{K}_{I} = 0$ Necessary properties of R:

★ $R \in GL(2d; \mathbb{Z})$

★ Metric L is pseudo-hermitian w.r.t. R: $L_{IK} R^{K}_{J} + L_{JK} R^{K}_{I} = 0$

Then:

• $\Pi \& \widetilde{\Pi}$ are null w.r.t. L: $\Pi^{T} L \Pi = \widetilde{\Pi}^{T} L \widetilde{\Pi} = 0$ $\longrightarrow \Pi \& \widetilde{\Pi}$ define maximally null subspaces

• R is preserved by $GL(d; \mathbb{Z}) \subset O(d,d;\mathbb{Z})$

Suppose \exists product structure R_{α} on patch $U_{\alpha} \subset N$.

• R_{α} defines splitting of fibres over U_{α} : $T^{2d} \rightarrow T^{d} \oplus \tilde{T}^{d}$

Suppose \exists product structure R_{α} on patch $U_{\alpha} \subset N$.

• R_{α} is integral \Rightarrow constant over U_{α} but can have $R_{\alpha} \neq R_{\beta}$ f on $U_{\beta} \subset N$

• R_{α} defines splitting of fibres over U_{α} : $T^{2d} \rightarrow T^{d} \oplus \tilde{T}^{d}$

If: $R_{\alpha} = g_{\alpha\beta}^{-1} R_{\beta} g_{\alpha\beta}$, $g_{\alpha\beta} \in GL(d; \mathbb{Z})$ (geometric case) then +1 eigenspaces fit together to form a T^d bundle over N and $R_{\alpha} = R_{\beta} \longrightarrow$ globally defined polarisation But for T-fold: $R_{\alpha} = g_{\alpha\beta}^{-1} R_{\beta} g_{\alpha\beta}$, $g_{\alpha\beta} \in O(d,d;\mathbb{Z})$

- \Rightarrow $R_{\alpha} \neq R_{\beta} \rightarrow \exists$ only local polarisation
- \Rightarrow T^d 's do not patch together to a manifold

But for T-fold: $R_{\alpha} = g_{\alpha\beta}^{-1} R_{\beta} g_{\alpha\beta}$, $g_{\alpha\beta} \in O(d,d;\mathbb{Z})$

- \Rightarrow $R_{\alpha} \neq R_{\beta}$ \longrightarrow \exists only local polarisation
- \Rightarrow T^d 's do not patch together to a manifold

Action of $g_{\alpha\beta} \in O(d,d; \mathbb{Z})$:

Physical space defined by R_β

 $h \in GL(d; \mathbb{Z})$ preserving R_{β}

Maximally null T^d -

Physical space defined by $R_{\alpha} = g_{\alpha\beta}^{-1} R_{\beta} g_{\alpha\beta}$

Conjugate $GL(d; \mathbb{Z}) \subset O(d,d; \mathbb{Z})$ with elements g h g⁻¹

Another max null T^d

Sigma model

Consider local patch $U \times T^{2d}$:

- Coordinates: $\{Y^m, X^l\}, I = 1,...,2d$
- Covariant momenta on T^{2d} :

• Bianchi identity: $d\mathcal{P}^{I} = 0$ \longrightarrow Locally $\mathcal{P}^{I}_{\alpha} = \partial_{\alpha} X^{I}$

- \bullet Introduce metric on T^{2d} : $\mathscr{M}_{\mathsf{IJ}}(\mathsf{Y})$ independent of \mathbb{X}^{I}
 - positive definite

$$\mathcal{L} = \frac{1}{2} \mathcal{M}_{\mathsf{I}\mathsf{J}} \mathcal{P}^{\mathsf{I}} \wedge {}^{*}\mathcal{P}^{\mathsf{J}} + \mathcal{L} (\mathsf{Y})$$

$$\mathcal{L} = \frac{1}{2} \mathcal{M}_{\mathsf{IJ}} \mathcal{P}^{\mathsf{I}} \wedge {}^{*} \mathcal{P}^{\mathsf{J}} + \mathcal{L} (\mathsf{Y})$$

? How to choose the self-duality constraint?

$$\mathcal{L} = \frac{1}{2} \mathcal{M}_{\mathsf{IJ}} \mathcal{P}^{\mathsf{I}} \wedge {}^{*} \mathcal{P}^{\mathsf{J}} + \mathcal{L} (\mathsf{Y})$$

- ? How to choose the self-duality constraint?
- ! Together with Bianchi identity it must generate the bulk equations of motion.

$$\mathcal{L} = \frac{1}{2} \mathcal{M}_{\mathsf{IJ}} \mathcal{P}^{\mathsf{I}} \wedge {}^{*}\mathcal{P}^{\mathsf{J}} + \mathcal{L} (\mathsf{Y})$$

- ? How to choose the self-duality constraint?
- ! Together with Bianchi identity it must generate the bulk equations of motion.

Bianchi identity: $d\mathcal{P}^{\dagger} = 0$

Eqns of motion: $d\mathcal{M}_{IJ} * \mathcal{P}^{J} = 0$

→ Self-duality constraint:

$$\mathcal{P}^{\,\mathsf{I}} = \mathsf{L}^{\mathsf{I}\mathsf{J}} \; \mathcal{M}_{\mathsf{J}\mathsf{K}} \;^{\star} \mathcal{P}^{\,\mathsf{K}}$$

→ Metric $\mathcal{M} = \mathcal{V}^{\intercal} \mathcal{V}$:

- Manifestly invariant under local $O(d) \times O(d)$ transf
- Transforms under O(d,d) as $\mathcal{M} \rightarrow g^{T} \mathcal{M} g$

From SD-constraint follows: $(L^{IJ} \mathcal{M}_{JK})^2 = 1$

In basis where
$$L = \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix}$$
:

$$(\mathsf{L}^{\mathsf{I}\mathsf{J}} \ \mathcal{M}_{\mathsf{J}\mathsf{K}})^2 = 1 \quad \Rightarrow \qquad \mathcal{M}_{IJ} = \begin{pmatrix} G - BG^{-1}B & BG^{-1} \\ -G^{-1}B & G^{-1} \end{pmatrix}$$

Can use O(d) × O(d) symmetry to choose triangular gauge for \mathcal{V} :

 $= e^{T}e$

$$\mathcal{V} = \begin{pmatrix} e^T & 0 \\ -e^{-1}B & e^{-1} \end{pmatrix}$$
 where G

Patching

In overlap $U_{\alpha} \cap U_{\beta} \subset N$:

 $X_{\alpha} = g_{\alpha\beta}^{-1} X_{\beta} + X_{\alpha\beta}$ $\mathcal{P}_{\alpha} = g_{\alpha\beta}^{-1} \mathcal{P}_{\beta}$ $L_{\alpha} = g_{\alpha\beta}^{-1} L_{\beta} g_{\alpha\beta}^{-T}$ $\mathcal{M}_{\alpha} = g_{\alpha\beta}^{T} \mathcal{M}_{\beta} g_{\alpha\beta}$

 $\begin{array}{lll} \mbox{For } g_{\alpha\beta} \in O(d,d;\,\mathbb{Z}): & L_{\alpha} = L_{\beta} & \mbox{ constant metric of signature (d,d)} \end{array}$

T-duality: two viewpoints

1. Active

The doubled torus is transformed; projection onto physical space is kept fixed.

$$\mathcal{M}_{\alpha} \rightarrow \mathcal{M}_{\beta} \qquad \qquad \mathsf{R}_{\alpha} = \mathsf{R}_{\beta}$$

2. Passive

The doubled torus is kept fixed; projection onto physical space is changed.

$$\mathcal{M}_{\alpha} = \mathcal{M}_{\beta} \qquad \qquad \mathsf{R}_{\alpha} \to \mathsf{R}_{\beta}$$

Doubled geometry

Allow T-duality also along the base \rightarrow double *all* coordinates

May be generalised to other spaces that locally are Lie group manifolds: G/C

discrete subgroup $\Gamma \subset G$

Nonlinear sigma model

for open strings on doubled space:

$$egin{aligned} S &= rac{1}{4} \int_{\Sigma} \mathcal{M}_{MN} \ \mathcal{P}^{M} \wedge st \mathcal{P}^{N} \ &+ rac{1}{12} \int_{V} t_{MNP} \ \mathcal{P}^{M} \wedge \mathcal{P}^{N} \wedge \mathcal{P}^{P} \ &- rac{1}{2} \int_{D} \omega_{MN} \ \mathcal{P}^{M} \wedge \mathcal{P}^{N} \end{aligned}$$

[Hull & Reid-Edwards; CA, Kimura, Reid-Edwards '08]

$$\partial V = \Sigma + D \iff$$

 $D = \text{surface on brane}$
 $\Sigma = \text{worldsheet}$

 $\omega = 2$ -form restricted by Lie algebra structure

 $|\mathcal{T}|_D = |d\omega|$

$$\mathcal{T} \equiv \frac{1}{12} \mathsf{t}_{\mathsf{MNP}} \ \mathcal{P}^{\mathsf{M}} \land \mathcal{P}^{\mathsf{N}} \land \mathcal{P}^{\mathsf{P}}$$

 \mathcal{M}_{MN} constant

 $\mathcal{P}^{\mathsf{M}} = \mathcal{P}^{\mathsf{M}} \mathsf{d} \mathsf{X}^{\mathsf{I}}$

$$t_{MNP} = t_{MN}Q L_{QP}$$
 = Lie algebra structure
constants on doubled geometry

Bianchi identity:
$$d\mathcal{P}^{M} + \frac{1}{2} t_{NP}^{M} \mathcal{P}^{N} \wedge \mathcal{P}^{P} = 0$$

Eqns of motion:

$$d\mathcal{M}_{MN} * \mathcal{P}^{N} + \mathcal{M}_{NP} t_{MQ}^{P} \mathcal{P}^{Q} \wedge * \mathcal{P}^{N} - \frac{1}{2} t_{MNP} \mathcal{P}^{N} \wedge \mathcal{P}^{P} = 0$$

→ Self-duality constraint:

$$\mathcal{P}^{\mathsf{M}} = \mathsf{L}^{\mathsf{M}\mathsf{N}} \, \mathcal{M}_{\mathsf{N}\mathsf{P}} \, {}^{*}\mathcal{P}^{\mathsf{P}}$$

D-branes

- **D-branes** = dynamical hypersurfaces to which open strings are attached
 - Described by boundary conditions of nonlinear sigma model

Dirichlet conditions:

conditions on vectors normal to brane

Neumann conditions:

conditions on vectors tangent to brane

Introduce Neumann & Dirichlet projectors: Ξ , $\overline{\Xi}$

Boundary conditions of doubled sigma model:

$$\begin{cases} \overline{\Xi}^{I}{}_{J}\partial_{\tau}\mathbb{X}^{J} = 0 & \text{Dirichlet} \\ \Xi^{I}{}_{K}\left[-\frac{1}{2}\mathcal{M}_{IJ}\partial_{\sigma}\mathbb{X}^{J} + \omega_{IJ}\partial_{\tau}\mathbb{X}^{J}\right]_{\partial\Sigma} = 0 & \text{Neumann} \end{cases}$$

Consistency with self-duality constraint

Boundary conditions:

(a)
$$\Xi^T L \Xi = \overline{\Xi}^T L \overline{\Xi} = 0$$

(b)
$$\Xi^{I}_{I'} \Xi^{J}_{J'} \Xi^{K}_{K'} t_{IJK} = 0$$

D-brane is maximally isotropic

D-brane is compatible with Lie algebra structure t_{IJK}

normal & tangent vectors on the D-brane are orthogonal w.r.t. \mathcal{M}

(d) $\Xi^{I}{}_{I'} \Xi^{J}{}_{J'} \Xi^{K}{}_{[I,J]} = 0$

(c) $\Xi^T \mathcal{M} \overline{\Xi} = 0$

integrability

[CA, Kimura, Reid-Edwards '08]

Thus in each patch the doubled space has two, in general different, splits into maximally null subspaces:

Thus in each patch the doubled space has two, in general different, splits into maximally null subspaces:

T-duality changes physical polarisation to different $T^d \subset T^{2d}$

- → Intersection with Dirichlet space changes
- Number of physical Dirichlet directions changes

Comparison:

doubled geometry vs generalized geometry

Similarities

- ★ Metrics $L = \begin{pmatrix} 0 & \mathbb{I} \\ \mathbb{I} & 0 \end{pmatrix}$ $\mathcal{M}_{IJ} = \begin{pmatrix} G BG^{-1}B & BG^{-1} \\ -G^{-1}B & G^{-1} \end{pmatrix} \in O(d,d)/O(d) \times O(d)$
- ★ Isotropic subspaces: Subspaces null w.r.t. L are important
- ★ Product structure DG: defines physical & dual spaces
 GG: defines split of TM ⊕ T*M
- ★ T-duality $O(d,d;\mathbb{Z})$ is naturally incorporated
- ★ *D-branes:* Intersection of two null subspaces

Comparison

Differences

- ★ Doubling DG: dim(M) → 2 dim(M) GG: TM → TM \oplus T*M
- ★ Transition functions DG: $O(d,d;\mathbb{Z}) \subset GL(2d)$

GG: GL(d)

★ O(n,n) structure DG: $O(d,d;\mathbb{Z})$

GG: O(d,d;ℝ)

Product structures & complex structures

On doubled geometry we have:

- Product structure $R = \Pi \tilde{\Pi}$, $R^2 = 1$ (polarisation)
- Product structure $S = L^{-1}M$, $S^2 = 1$ (from SD-constraint)
- Complex structure I = SR, $I^2 = -1$

They satisfy:

 $\begin{aligned} \mathcal{M}_{IK} \ S^{K}_{J} - \mathcal{M}_{JK} \ S^{K}_{I} &= 0 & \text{compatible} \\ \\ L_{IK} \ S^{K}_{J} - L_{JK} \ S^{K}_{I} &= 0 & \text{compatible} \\ \\ L_{IK} \ I^{K}_{J} + L_{JK} \ I^{K}_{I} &= 0 & \text{hermitian} \end{aligned}$

The structures R, S, I satisfy a pseudo-quaternionic algebra with $sl(2; \mathbb{R})$ commutation relations:

Define $q_1 = R$, $q_2 = S$, $q_3 = I$: $q_a q_b = f_{ab}{}^c q_c + \eta_{ab}$ structure constants of sl(2;R): $f_{12}{}^3 = -1$, $f_{23}{}^1 = 1$, $f_{31}{}^2 = 1$ Cartan metric of sl(2;R): $\eta_{ab} = f_{ac}{}^d f_{bd}{}^c = diag(1,1,-1)$

The structures q_a are preserved by the O(d) diagonal subgroup of O(d) × O(d).

★ Each of the structures R, S, I defines a generalised complex or real structure for fibres T^d, and together they furnish a generalised pseudo-hyperkähler structure. ★ Each of the structures R, S, I defines a generalised complex or real structure for fibres T^d, and together they furnish a generalised pseudo-hyperkähler structure.

Thank you