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Introduction

String theory needs 10 dim

String Theory

—» Compactify on 6-dim space
to get 4-dim theory

—» Massless scalars
parameterising internal space

But no massless scalars in nature

-—) make scalars massive: Moduli stabilization



Moduli stabilization

Turn on background fluxes on internal space

—p potential that stabilises moduli & generates mass

But:

T-duality leads to non-geometric spaces
- OK, because some of them are consistent string backgrounds

Ex: T-folds, asymmetric orbifolds



Hull ‘04: Doubled formalism

Geometric description of T-folds

!

Transition functions in T-duality group

Generalise =—» Doubled geometry [Hull ‘06]

Geometric description of more general
non-geometric spaces



Doubled geometry

Includes all T-duals of a given nonlinear sigma model, in a
single description.

Involves constructing a “doubled space” & a “doubled sigma
model”.

From this obtain the (mutually dual) physical models.

—p Better understanding of T-duality?



Take torus fibration M: fi @
-
N
General background tensor: [Bes = Crp=r 1

(legs along fibres, independent
of fibre coords)



T-folds

Take torus fibration M: fi @
-
N
General background tensor: [Bes = Crp=r 1

(legs along fibres, independent
of fibre coords)

e For geometric transition functions: h e GL(d;Z)

(large diffeomorphisms on T9)

In overlap U N U’ of patchesonbase: E’=h EhT



e For non-geometric transition functions:

= (? Z) e O(d,d;Z) (T-duality symmetry on T¢ fibration)

—) g preserves L= (?I g)

In overlap of patchesonbase: E'=(aE +Db) (c E +d)

!

mixes G & B
T-duality monodromy
around non-contractible
loop in the base —» T-fold = mondrofold

Exe N=S1: Y~Y +2mn
= E(Y+2n) =(@E(Y)+b) (c E(Y) +d)



T-folds arise as T-duals of flux compactifications:
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f-flux Q-flux
(twisted torus) (T-fold)
B=0
geometric non-geometric

/

Locally a T2 fibration over S'
but globally twisted by O(2,2;Z7)



T-duality
along Z
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T2 fibration over S with
geometric monodromy

he GL(2;Z)

ds2 = dx2 + dy2
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Global twist g € O(2,2;Z7)



e Example of T-fold:  The mirror of a Calabi-Yau with
NS-NS flux on its T3 fibres

e Analogously can construct S-folds (S-duality),
U-folds (U-duality) and mirror-folds (mirror symmetry).



Doubled formalism

String theory compactified on Td:

—» moduli space 0O(d,d)/O(d) x O(d)

pLr=pxw take values in Narain lattice

E

momentum winding

Conjugate coords: Xipr= X=X

\

dual coord



The T-dual of Td is also a Td

— Natural to formulate as string theory on target
space T2d with O(d,d;Z) T-duality acting on its
coordinates X, X

0@ — OO w

T-fold: @ —> @ @
-, &



Degrees of freedom are doubled: {X} — {X, X} ={X}

—) Impose constraint: worldsheet

/ Hodge dual
dXL = *dXL dXRr = - *dXR

~

dX =*dX
= { Self-duality constraint

~

dX =*dX

—» Usual T-duality transformations

Defines natural O(d,d) invariant metric L on T=29:

{X} and {)7} spaces are maximally null w.r.t. L= <?I g)



T-duality group O(d,d;Z) c GL(2d) = group of large

diffeomorphisms of T2d

— The T-duality monodromy of Td over N has become
a geometric transition function for T2d over N.

—» The new space is a T2d fibration over N.

QB
&



Polarisation

To recover physical target space S E n
(the T-fold), introduce projectors: -
1 =
N=1(1+R) fi=1(1-R)
projects to projects to
physical space dual space

R = product structure on T2dfibres: R2=1

— Splits tangent space into +1 eigenspaces of R



Necessary properties of R:
* R e GL(2d; Z)

% Metric L is pseudo-hermitian w.r.t. R:
Lik RXy + Luk R =0



Necessary properties of R:
* R e GL(2d; Z)

% Metric L is pseudo-hermitian w.r.t. R:
Lik RXy + Luk R =0

Then:
e M & f1are null w.rt. L: NMTLN=fATL =0

—> [1 & {1 define maximally null subspaces

e Ris preserved by GL(d; Z) c O(d,d;Z)



Suppose d product structure Rq on patch Uq C N.

e Ry isintegral = constant over Uq but can have Ra# Rg

T

onUgCN

e R, defines splitting of fibres over Uqg :  T2d — Td @ Td



Suppose d product structure Rq on patch Uq C N.

e Ry isintegral = constant over Uq but can have Ra# Rg

T

onUgCN

e R, defines splitting of fibres over Uqg :  T2d — Td @ Td

If: Ra = gap' Rpgag , gag € GL(d; Z)  (geometric case)

then +1 eigenspaces fit together to form a T9 bundle over N

and Rq=Rg =—» globally defined polarisation



But for T-fold: Ra = gap' Rpgag , gdap € O(d,d; Z)

= RaqzRg = donlylocal polarisation

= Td’s do not patch together to a manifold



But for T-fold: Ra = gap' Rpgag , gdap € O(d,d; Z)

= RaqzRg = donlylocal polarisation

= Td’s do not patch together to a manifold

Action of gqs € O(d,d; Z):

Physical space
defined by Rpg

Physical space defined

_}
by Ra = gap™? Rg gap

h e GL(d; Z)
preserving Rg

Conjugate GL(d; Z) c O(d,d; Z)

= with elements g h g-

Maximally null Td  —p Another max null Td



Sigma model

Consider local patch U x T2d :

e Coordinates: fym XL =2

e Covariant momenta on T2d: Pl ="Ply, doc
worldsheet
coords

e Bianchi identity: Gl =)

—» Locally Plq= duaX

e Introduce metricon T2d :  M;y(Y) - independent of X!
- positive definite



Sigma model on U x T2d :

L= MyP AP+ L(Y)



Sigma model on U x T2d :

L= MyP AP+ L(Y)

? How to choose the self-duality constraint?



Sigma model on U x T2d :

L= MyP AP+ L(Y)

? How to choose the self-duality constraint?

I Together with Bianchi identity it must generate the bulk
equations of motion.



Sigma model on U x T2d:

L= MyP AP+ L(Y)

? How to choose the self-duality constraint?

I Together with Bianchi identity it must generate the bulk
equations of motion.

Bianchi identity: dP!'=0
Eqgns of motion: dMy *PJ =0

—p Self-duality constraint: Pl=1LN My *PK



Require M € 0O(d,d)/O(d) x O(d) (moduli space of T¢ compactif)

—) Parameterise interms of vielbein V: M=VT1V

T

element of O(d,d) identified
under left action of O(d) x O(d):

V~kV
V transforms as: "V = k(Y) Vg

1 N\
rigid O(d,d) transf
local O(d) x O(d) transf
—» Metric M=VTV :

- Manifestly invariant under local O(d) x O(d) transf

- Transforms under O(d,d)as M — g' M g



From SD-constraint follows: (LM Mk )2 =1

In basis where [ = (?I g) :

G—BG'B BG!
(LIJ «MJK )2 — ] = %J o ( _G—IB G—l )

Can use O(d) x O(d) symmetry to choose triangular gauge for V :

V=( - O> where G =eTe



Patching
In overlap Uan Ugc N:
Xa = gap! Xg + Xap
Pa = gap! Pp

La = gap' Lp Jap’
Ma = gap" Mg gop

For gap € O(d,d;Z): La=Lg  constant metric of
signature (d,d)



T-duality: two viewpoints

1. Active

The doubled torus is transformed;
projection onto physical space is kept fixed.

jvlo_ = MB Ra= RB

2. Passive

The doubled torus is kept fixed;
projection onto physical space is changed.

jvla —_ MB Rq_’ RB



Doubled geometry

Allow T-duality also along the base — double all coordinates

e . O
@

@

May be generalised to other spaces that locally are Lie group
manifolds: G/I’

discrete subgrouprc G



Nonlinear sigma model [Hull & Reic-Edwards
for open strings on doubled space: CAKimiiaie Lo e

oVa—"2"h) SN

D = surface on brane
> = worldsheet

o = 2-form restricted
by Lie algebra structure

T lo = 1 dw

e — 112tMNP PM A PN A PP

Mun constant

il = i aX

tvne = tMNQ LQP = Lie algebra structure
constants on doubled geometry



Bianchi identity: dPM + % InpE E AT 2 =)

Eqgns of motion:

dMmun *PN + Mnp tmgP PQAA *PN - %tMNP JRANEN TP = ()

—» Self-duality constraint: PM = |MN ‘Mnp *PP



D-branes

D-branes = dynamical hypersurfaces to which open strings
are attached

—>» Described by boundary conditions of nonlinear
sigma model

D-brane

L

worldsheet
boundary

Dirichlet conditions: :
string

Y

conditions on vectors normal to brane

Neumann conditions:

conditions on vectors tangent to brane



T-dual

Neumann conds S DirichLet conds
ohnX =0 0t Xi=0

/

Neumann Dirichlet
subspace subspace



T-dual

Neumann conds S DirichLet conds
ohnX =0 0t Xi=0

/

Neumann Dirichlet
subspace subspace

Introduce Neumann & Dirichlet projectors: =, =

—p  Boundary conditions of doubled sigma model:

Bk 70X =0 Dirichlet

1
¥



Consistency with self-duality constraint

.

Boundary conditions:
GF 5T L=—0 D-brane is maximally isotropic

® ELEEXer=0 D-brane is compatible with Lie
algebra structure 7k

(¢) I af = —0 normal & tangent vectors on the
D-brane are orthogonal w.r.t. ‘M

@ & o= integrability

[CA, Kimura, Reid-Edwards ‘08]



Thus in each patch the doubled space has two, in general
different, splits into maximally null subspaces:

T2d

/N

D-branes (T9, T9) are Td) phys & dual spaces

prrane

intersection — physical D-brane



Thus in each patch the doubled space has two, in general
different, splits into maximally null subspaces:

T2d

/N

D-branes (T9, T9) are Td) phys & dual spaces

prrane

intersection — physical D-brane

T-duality changes physical polarisation to different Td c T2d

— Intersection with Dirichlet space changes

—» Number of physical Dirichlet directions changes



Comparison:
doubled geometry vs generalized geometry

Similarities
s i —1 — 1
* Metrics L= (?1 g) W, = (G P ) € 0(d,d)/0(d) x 0(d)

% |sotropic subspaces: Subspaces null w.r.t. L are important

% Product structure DG: defines physical & dual spaces
GG: defines split of TM @& T*M

* T-duality O(d,d;Z) is naturally incorporated

* D-branes: Intersection of two null subspaces



Comparison

Differences

% Doubling DG: dim(M) — 2 dim(M)
GG: TM = TM @ T*M

% Transition functions DG: O(d,d;Z) c GL(2d)
GG: GL(d)
% O(n,n) structure DG: O(d,d;Z)

GG: O(d,d;R)



Product structures & complex structures

On doubled geometry we have:

~

e Product structure R=T11-1T1, R2=1 (polarisation)

e Product structure S=L1M, S2=1 (from SD-constraint)

e Complex structure 7 = SR, JI2=-]

They satisfy:
Mk SKy - Mk SK=0 compatible
Lik SKy - Lik SKi =0 compatible
Lik 7Ky + Lok 7K =0 hermitian



The structures R, S, I satisfy a pseudo-quaternionic algebra
with sl(2; R) commutation relations:

Define q1=R,g2=S,q3=17:

Ja Qo = fab® dc + Nab

structure constants Cartan metric of sl(2;R):

of sl(2;R): f128 = -1, Nab = fac? foa® = diag(1,1,-1)
Eol=Ril =

The structures g4 are preserved by the
O(d) diagonal subgroup of O(d) x O(d).



% Each of the structures R, S, 7 defines a generalised complex
or real structure for fibres T9, and together they furnish a

generalised pseudo-hyperkéahler structure.



% Each of the structures R, S, 7 defines a generalised complex
or real structure for fibres T9, and together they furnish a

generalised pseudo-hyperkahler structure.

Choice of polarisation

1

Choice of maximally isotropic subspace

.

Choice of pure spinor of Spin(d,d) for each point on T2d
i E
Pure spinor of Spin(d,d) for each point in Td fibration

. 1

Real analogue of generalised CY structure on Td fibres
(preserved by GL(d) c O(d,d) instead of U(m,m) c O(2m,2m))






