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Theorem 0.1 (J , ψ) : G. Kähler structures with one

pure spinor on a compact manifold X. Let {Jt}t∈D be

an analytic family of G. cpx strs , parametrized by the

complex disk D of 1 dim. containing the origin 0, with

J0 = J . Then there exists a family of G. Kähler strs with

one pure spinor (Jt, ψt)t∈D′ , parametrized by a small disk

D′ containing the origin, with ψ0 = ψ.
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Theorem 0.1 implies that G. Kähler strs with one pure

spinor are stable under small deformations of G. cpx

strs, which is a generalization of the stability theorem of

Kodaira-Spencer,
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Known results on bi-Hermitian and generalized Kähler

structures

• approaches by the reduction

(Y. Lin and S. Tolman [LT], Bursztyn, Gualtieri

and Cavalcanti [BGC])
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• A construction of bi-Hermitain str. on Fano sur-

faces (Hitchin) by Hamiltonian diffeomorphisms

{(J+(t), J−)}

Higher dimensional generalization to Poisson man-

ifolds (Gualtieri)

they are restricted deformations such that complex

structures do not change, (X, J+(t)) = (X, J−) =

(X, J)
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• blown up Hopf surfaces (LeBrun)

• hyperbolic Inoue surfaces by using twistor spaces

(Fujiki-Pontecorvo)
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Let (X, J, ω) be a compact Kähler manifold with a holo-

morphic Poisson structure β. Then there is a family of

bi-Hermitain structures (J+(t), J−(t))

β ·ω ∈ Θ⊗ ∧0,1 : contraction of β by ω

[±β·ω] ∈ H1(X,Θ) : Kodaira-Spencer classes of deforma-

tions of bi-Hermitain structures {J±(t)}.

J+(t) = J + β · ωt+O(t2), J−(t) = J − β · ωt+O(t2)
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Theorem 0.2 The obstruction class of the infinitesimal

deformation [β ·ω] vanishes, i.e.,

[β ·ω, β ·ω] = 0 ∈ H2(X,Θ)

For instance (X, J) = CP 1 × Tn
C (n > 1). There are

obstructions to deformations of complex structures on

(X, J). However the deformations given by holomorphic

Poisson structures are unobstructed.



1 Holomorphic Poisson structures

X: compact Kähler manifold with Kähler form ω

β ∈ H0(X,∧2Θ) : holomorphic 2-vector filed

β: holomorphic Poisson structure

⇔ [β, β]Scou = 0 (Scouten bracket)

A holomorphic Poisson str. β gives deformations of

G.complex strs by Jβt := AdeβtJJ .
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From theorem 0.1 (the stability theorem),

Theorem 1.1 A holomorphic Poisson structure β gives

rise to non-trivial deformations of G.Kähler structures

(Jβt, ψt).

rank βx: the rank of 2-vector βx, x ∈ X

Type (Jβ)x = n− 2 rankβx



1 Holomorphic Poisson structures 11

From theorem 1.1 every compact Toric Kähler manifolds

admits non-trivial G. Kähler structures, ( at least 2 dim).

{Vi}l
i=1: l commuting holomorphic vector fields

Then
β =

∑

i,j

λi,jVi ∧ Vj ,

gives a holomorphic Poisson structure where each λi,j is

a constant.



2 G. Kähler strs. on Fano surfaces

X = CP 2, ∧2Θ ∼= K−1 ∼= O(3)

β ∈ H0(CP 2,∧2Θ) ∼= H0(CP 2,O(3))

the zero set of β is the cubic curve of CP 2

Theorem 0.1 implies a hol. 2-vector β generates deforma-

tions of G. Kähler strs on CP 2.
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Sn : blown up CP 2 at generic n points

(n ≤ 8)

H1(Sn,Θ) :infinitesimal deformations of cpx strs of Sn
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Deformations of G. cpx strs are given by

H0(Sn,K
−1)⊕H1(Sn,Θ).

No obstructions to deformations.

dimH1(Sn,Θ) =

{
2n− 8, (n = 4, · · · , 8)
0, (n = 0, 1, 2, 3)

dimH0(Sn,K
−1) = 10− n
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Deformations of G. Kähler strs are given by

H0(Sn,K
−1)⊕H1(Sn,Θ)⊕H1,1(Sn).

H1,1(Sn) = 1 + n



3 An applicatoin to

bi-Hermitian geometry

(X, J+, J−, h) : bi-Hermitian sturucutre

⇔ J+, J−：cpx structures ,

h : Hermitain metric w.r.t. both J+ and J−

Torsion condition:

−dc
+ω+ = dc

−ω− = db,
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where dc
± =

√−1(∂± − ∂±),

∂± : ∂ operator w.r.t J±.

Theorem 3.1 (Gualitieri) G. Kähler str ⇔ bi-Hermitain

str with the torsion condition



3 An applicatoin to bi-Hermitian geometry 18

From theorem 0.1 and 3.1,

Theorem 3.2 Sn ：blown up CP 2 at n(≤ 8) points.

Then there exists a family of bi-Hermitain structures on

Sn which is parametrized by H0(Sn,K
−1)⊕H1(Sn,Θ)⊕

H1,1(Sn)



4 bi-Hermitain structures on ruled surfaces

(X, J) → Σ : minimal ruled surface over a Riemannian

surface Σ with genus g. If there is a non-trivial holomor-

phic Poisson strucutre on X, then there exists a family of

bi-Hermitian structures (J+(t), J−(t)) on X.

J+(0) = J−(0) = J

Fact: small deformations of (X, J) are still ruled surfaces

for genus g ≥ 1.

Thus (X, J±(t)) is a ruled surface w.r.t both J±(t).
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for instance, P(T ∗Σ ⊕ OΣ) → Σ admits a Poisson struc-

ture.
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(X, J) = F2 = P(T ∗CP 1 ⊕OCP 1) : ruled surfaces

deformations of F2 can be the product CP 1 ×CP 1.

Applying our theorem of deformations, we obtain a

family of bihermitian structures (J+(t), J) such that

(X, J+(t)) = CP 1 ×CP 1 (t 6= 0) and (X, J) = F2.

It is because that there is no obstruction to deformations

ogeneralized complex structures on F2, i.e.,

H2(F2,Θ) ⊕ H1(F2,∧2Θ) = {0}, and the map

H0(F2,∧2Θ)×H1,1(F2) → H1(F2,Θ) is surjective.



5 idea of proof

1. generalized Hodge decomposition of generalized Kähler

manifolds

2. To show that the obstruction classes to deformations

vanish. An analogous to the method in the theorem of

unobstructed deformations of Calabi-Yau manifolds due

to Bogomolov-Tian-Todorov.

3. Obstruction space does not vanish in general, however

the obstruction class vanishes. The method is modified to
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apply to the cases of generalized Kähler deformations

4. Key Point is to use non-degenerate pure spinors which

are closed differential forms.



6 generalized Hodge decomposition

(X,J1) : generalized complex manifold of dimR = 2n.

J ∈SO(T ⊕ T ∗) ⊂ CL

CL acts on ∧∗T ∗ by the Spin representation. Then ∧∗T ∗
is decomposed into eigenspaces

∧∗T ∗ = U−n
J1

⊕ U−n+1
J1

⊕ · · · ⊕ Un
J1

Since J1 is integrable, the exterior derivative is decom-

posed, d = ∂J1 + ∂J1

∂J1 : Up
J1
→ Up−1

J1
, ∂J1 : Up

J1
→ Up+1

J1
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(X,J1,J2) : generalized Kähler manifold

[J1,J2] = 0, We have the simultaneous decomposition,

Up,q = Up
J1
∩ Uq

J2

∧∗T ∗ =
⊕
p.q

Up,q

There is a generalized Hodge star operator ∗ which in-

duces a volume form and a metric on ∧∗T ∗.

VolG = ∗1, G(α, β) = 〈α, ∗β〉VolG
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The exterior derivative d is decomposed

d = δ+ + δ− + δ+ + δ−

As in Kähler manifolds, we have

4d = 24∂Ji
= 24∂Ji

= 44δ± = 44δ±

Thus we have the Harmonic theory,

Theorem 6.1 (Gualtieri)

Heven/odd(X) =
⊕

p+q=even/odd

Hp,q(X),
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where
Hp,q(X) = ker4d ∩ Up,q



7 sketch of proof

Given deformations of G.cpx structures Jt, there exists a

family of sections ∃a(t) ∈ CL2 such that

Adea(t)J0 = Jt.

a(t) = a1t+ a2
t2

2!
+ a3

t3

3!
+ · · ·
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Then we shall construct a formal power series b(t) satis-

fying :

d(ea(t)eb(t)ψ) = 0, (eq)
Adeb(t)J = J

From the Campbell-Hausdorff formula,

ez(t) = ea(t)eb(t), (z(t) ∈ CL2).

If we obtain such a b(t), then we have the action of Clifford
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group ez(t) on J ,

Adez(t)J = Adea(t)Adeb(t)J = Adea(t)J = Jt,

which preserves deformations of G. complex str {Jt}. Put

ψt = ez(t)ψ. Then

dez(t)ψ = dea(t)eb(t)ψ = 0.

Thus the pair (Jt, ψt) is a G. Kähler str. We determine

bk inductively,

b(t) = b1t+ b2
t2

2!
+ · · · .
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We solve the equation dea(t)eb(t)ψ = 0. the k-th order

term in t of (eq) is given by

1
k!
dbkψ + Obk(a<k, b<k) = 0.
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We introduce a differential graded module over CL,

(K∗, d)

K1 = U0,−n+2

K2 = U1,−n+1 ⊕ U−1,−n+1 ⊕ U1,−n+3 ⊕ U−1,n+3

Then we have an elliptic complex,

0 d−→ K1 d−→ K2 d−→ · · ·

with the (finite dimensional) cohomology groups Hi(K∗).

(K∗, d) is a subcomplex of the full de Rham complex.
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From the generalized Hodge decomposition of G. Kähler

manifolds, it turns out that the map pi : Hi(K∗) →
H∗

dR(X) is injective.
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Obk = Obk(a<k, b<k) ∈ K2 defines

[Obk] ∈ H2(K∗) : the obstruction class
1
k!dbkψ ∈ dΓ(K1).

1
k!
dbkψ + Obk(a<k, b<k) = 0.

0 −→K1 d−→ K2 −→ · · ·
bkψ 7→ −(k!)Obk
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Obk is a d-exact form in K2. Since the map p2 is injective,

the obstruction class [Obk] vanishes. Hence there exists a

solution bk for each k and we obtain a formal power series

b(t) as a solution of the equation (eq). Finally we show

that the formal power series b(t) converges.



8 Generalized Kähler submanifolds

Definition 8.1 (X2n,J , ψ) G.Kähler manifold with one

pure spinor. A submanifold iM : M2m → (X2n,J , ψ) ad-

mits J -invariant conormal bundle if the conormal bundle

N∗
M|X to M in X satisfies

J (N∗
M|X) = N∗

M|X .

Rremark If a submanifold M admits J -invariant conor-

mal bundle, M is a generalized complex submanifold in

the sense of O. Ben-Bassart and M. Boyarchenko.
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Then J induces the G.almost complex str. JM and we

have

Theorem 8.2 JM is integrable.

Theorem 8.3 i∗Mψ is a non-degenerate, pure spinor on

M . In particular, (M,JM , i∗Mψ) is a G.Kähler submani-

fold with one pure spinor.

X : compact Kähler maniofold with hol. Poisson struc-

ture β. (β ⇔ the Poisson structure { , }X).
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Definition 8.4 Let M be a complex submanifold defined

by an ideal IM . A complex submanifold M of X is a

Poisson submanifold if β(df) ⊂ IM ⊗ TX, for all f ∈ IM .

This is equivalent to say that the Poisson bracket { , }X

induces a Poisson bracket { , }M on M .

We have a family of G.Kähler structures (Jβ,t, ψt) from

theorem 0.1. Then
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Theorem 8.5 Let iM : M → (X,β) be a Poisson sub-

manifold. Then M is a generalized Kähler submanifold of

(X,Jβ,t, ψt).
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Poisson submanifold

(M, { , }M ) //

®¶

Poisson manifold

(X, { , }X)

®¶
Generalized Kähler submanifold

(M, i∗MJβ , i
∗
Mψ) // Generalized Kähler manifold

(X,Jβ , ψ)

Many interesting examples of G.Kähler submanifolds arise

as Poisson submanifolds.


