Holomorphic Poisson structures and deformations of generalized Kähler structures

Osaka University Ryushi Goto

Supersymmetry in Complex Geometry Institute for the Physics and Mathematics of the Universe January 5-8 2009 R.Goto, On deformations of generalized Calabi-Yau, HyperKähler, G_2 and Spin(7) structures, math.DG/051221

R. Goto, Deformations of generalized complex and generalized Kähler structures, math. DG/0705.2495

R. Goto, Poisson structures and generalized Kähler structures, math. D.G/0712.2685 X : compact real manifold of 2n dimT := TX : tangent bundle of X $T^* := T^*X : \text{ cotangent bundle of } X$

1 Introduction

A notion of generalized complex structures are introduced by Hitchin which interpolates symplectic structures and complex structures.

A generalized Kähler structure is a generalization of ordinary Kähler structure which inherits remarkable properties of Kähler geometry such as the Hodge decomposition, (generalized Hodge decomposition) **Theorem** (Kodaira-Spencer) Small deformations of Kähler manifolds are still Kählerian

- (stability theorem of Kähler structures)
- **Problem** Are generalized Kähler structures stable under
- small deformations of generalized complex structures ?

Theorem(Kodaira-Spencer) Small deformations of
Kähler manifolds are still Kählerian
(stability theorem of Kähler structures)
Problem Are generalized Kähler structures stable under

small deformations of generalized complex structures ?

Ans. Yes,

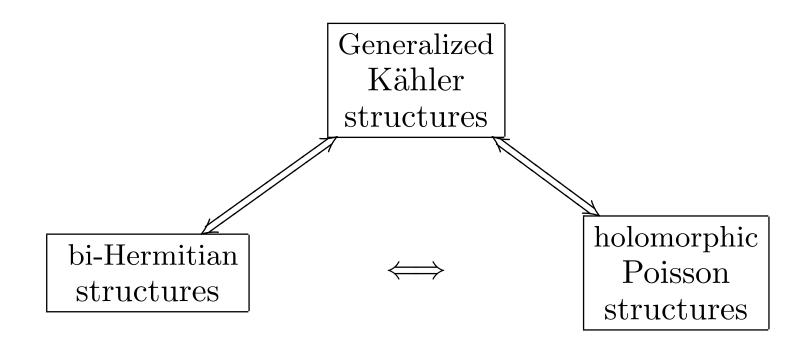
"generalized Kähler structures with one pure spinor" are stable under small deformations of generalized complex structures. Question: Are there nontrivial generalized Kähler structure on holomorphic Poisson Kähler manifolds ? Holomorphic Symplectic manifolds ⇔ hyperKähler structure

Holomorphic Poisson manifold \Leftrightarrow generalized Kähler structure ?

Question: Are there nontrivial generalized Kähler structure on holomorphic Poisson Kähler manifolds ? Holomorphic Symplectic manifolds ⇔ hyperKähler structure

Holomorphic Poisson manifold \Leftrightarrow generalized Kähler structure ?

Ans. Yes !



Generalized geometry

idea : To replace the tangent bundle T on a manifold with the direct sum $T\oplus T^*$!

$$T \Rightarrow T \oplus T^*$$

 \langle , \rangle : metric on $T \oplus T^*$ with sgn (2n, 2n)O $(T \oplus T^*)$: the orthogonal group bundle, SO $(T \oplus T^*)$: special orthogonal group bundle. Clifford algebra CL of $T \oplus T^*$ Clifford group $G_{\rm cl}$ geometric structures with the symmetry of

Clifford group $G_{cl} \rightarrow (almost)$ generalized geometric str.

$$1 \to \underline{\mathbf{R}}^* \to G_{cl} \to O(T \oplus T^*) \to 1$$
$$\mathrm{CL}^0 \subset \mathrm{CL}^2 \subset \cdots \subset \mathrm{CL}$$

 CL^2 : the Lie algebra of the Clifford group G_{cl} Then small deformations of almost generalized geometric structures are given by

$$\Phi_t = e^{a(t)} \cdot \Phi, \quad (a(t) \in \mathrm{CL}^2[[t]])$$

$$\operatorname{CL}^2 = C^{\infty}(X) \oplus \operatorname{End}(T) \oplus \wedge^2 T^* \oplus \wedge^2 T$$

End(T) \Leftrightarrow ordinary deformations of structures $b \in \wedge^2 T^* \Leftrightarrow$: transformations by *b*-field $\beta \in \wedge^2 T \Leftrightarrow$ transformations by 2-vector, (Poisson deformations) We need to solve a PDF to obtain integrable generalized

structures.

An almost generalized complex structure on Xis a section $\mathcal{J} \in \mathrm{SO}(T \oplus T^*)$ with

$$\mathcal{J}^2 = -\mathrm{id}$$

\mathcal{J} + an integrability condition \Downarrow

generalized complex structure.

The eigenspace decomposition of $(T \oplus T^*) \otimes \mathbf{C}$ w.r.t. \mathcal{J}

$$(T \oplus T^*) \otimes \mathbf{C} = L \oplus \overline{L}$$

w.r.t. the Courant bracket.

The set of almost G. cpx strs forms an orbit of the adjoint $f(G) = \int_{-\infty}^{\infty} G(T, \phi, T, T) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(T, T) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} G(T, T) = \int_{-\infty}^{\infty} G(T,$

action of $O(T \oplus T^*)$ on $End(T \oplus T^*)$.

J: (ordinary) complex str. on X

 J^{\ast} : the cpx str. on T^{\ast}

generalized complex structure \mathcal{J}_J is given by

$$\mathcal{J}_J = \begin{pmatrix} J & 0\\ 0 & -J^* \end{pmatrix}$$

 ω : symplectic str. on X

generalized complex structure \mathcal{J}_{ω} is given by

$$\mathcal{J}_{\omega} = \begin{pmatrix} 0 & -\omega^{-1} \\ \omega & 0 \end{pmatrix}$$

 $(\omega: T \to T^*, \omega^{-1}: T^* \to T.)$

Thus a cpx str. J and a symplectic str. ω on a mfd Xrespectively gives rise to generalized complex structures \mathcal{J}_J and \mathcal{J}_{ω} . there exists a section $g \in \mathcal{O}(T \oplus T^*)$ such that $\operatorname{Ad}_g \mathcal{J}_J = \mathcal{J}_{\omega}$ (locally). \mathcal{J} : G. cpx str. on a manifold X. For each point $x \in X$,

we have the type number,

Type
$$\mathcal{J}_x \in \{0, 1, \cdots, n\}.$$

<u>1 Introduction</u>

type $0 \Rightarrow$	symplectic	structures	(+b-fields)
----------------------	------------	------------	-------------

type 1

type 2 intermediate structures

•

type n \Rightarrow complex structures(+*b*-fields)

generalized cpx strs interpolate between complex strs and symlectic strs.

What are intermediate structures ?

 ${\mathcal J}$ on X with a constant type number l

Then \mathcal{J} defines a foliation on X with transversally holomorphic str. of cpx l dim and leafwise symplectic structure.

However

In general, type ${\mathcal J}$ may jump from a point to a point

2 Pure spinors

 $E = v + \theta \in T \oplus T^*$ acts on a differential form $\psi \in \wedge^* T^*$ by the interior product i_v and the exterior product $\theta \wedge$, $(v \in T, \theta \in T^*)$

$$E \cdot \psi := i_v \psi + \theta \wedge \psi$$

Then

$$E \cdot E \cdot \psi = 2\langle E, E \rangle \psi.$$

Thus we have the induced action of the Clifford algebra $\operatorname{CL}(T \oplus T^*)$ on $\wedge^* T^*$

(Spin representation).

isotropic subspace L_{ψ}

$$L_{\psi} := \{ E \in (T \oplus T^*) \otimes \mathbf{C} \, | \, E \cdot \psi = 0 \}$$

 $\psi \in \wedge^* T^*$ is a (complex) pure spinor $\stackrel{def}{\Leftrightarrow}$

 $\dim_{\mathbf{C}} L_{\psi} = 2n \,(\text{maximal dim.})$

pure spinor ψ is nondegenerate if we have (1) $(T \oplus T^*) \otimes \mathbf{C} = L_{\psi} \oplus \overline{L}_{\psi}.$ This is equivalent to non-vanishing of spinor norm of ψ ,

$$\langle \psi, \overline{\psi} \rangle \neq 0$$

A nondegenerate, pure spinor ψ gives the decomposition (1) which induces the almost generalized complex str \mathcal{J}_{ψ} .

$$\psi \Rightarrow \mathcal{J}_{\psi}$$

If $d\psi = 0$, the corresponding G. cpx str \mathcal{J}_{ψ} becomes integrable.

Definition 3.1 A pair $(\mathcal{J}_0, \mathcal{J}_1)$ consisting of commuting G. cpx strs is a generalized Kähler structure if the composition

$$\hat{G} := -\mathcal{J}_0 \mathcal{J}_1 = -\mathcal{J}_1 \mathcal{J}_0 \in \mathrm{SO}(T \oplus T^*)$$

gives a positive definite metric, i.e., $G(E_1, E_2) := \langle \hat{G}E_1, E_2 \rangle. \ (E_1, E_2 \in T \oplus T^*.)$ \mathcal{J}_0 : G. cpx. str.

 ψ : nondegenerate, pure spinor with $d\psi = 0$

Definition 3.2 (\mathcal{J}_0, ψ) :generalized Kähler structures with one pure spinor \Leftrightarrow the induced pair G. cpx str $(\mathcal{J}_0, \mathcal{J}_{\psi})$ is a G. Kähler str. **Theorem 3.3** (\mathcal{J}, ψ) : G. Kähler structures with one pure spinor on a compact manifold X. Let $\{\mathcal{J}_t\}_{t\in D}$ be an analytic family of G. cpx strs , parametrized by the complex disk D of 1 dim. containing the origin 0, with $\mathcal{J}_0 = \mathcal{J}$. Then there exists a family of G. Kähler strs with one pure spinor $(\mathcal{J}_t, \psi_t)_{t\in D'}$, parametrized by a small disk D' containing the origin, with $\psi_0 = \psi$. Theorem 3.3 implies that G. Kähler strs with one pure spinor are stable under small deformations of G. cpx strs, which is a generalization of the stability theorem of Kodaira-Spencer,

4 Holomorphic Poisson structures

- X: compact Kähler manifold with Kähler form ω
- $\beta \in H^0(X, \wedge^2 \Theta)$: holomorphic 2-vector filed
- $\beta:$ holomorphic Poisson structure
- $\Leftrightarrow [\beta,\beta]_{\rm Scou} = 0 \ ({\rm Scouten \ bracket})$
- A holomorphic Poisson str. β gives deformations of G.complex strs by $\mathcal{J}_{\beta t} := \operatorname{Ad}_{e^{\beta t}} \mathcal{J}_J.$

From theorem 3.3 (the stability theorem),

Theorem 4.1 A holomorphic Poisson structure β gives rise to non-trivial deformations of G.Kähler structures $(\mathcal{J}_{\beta t}, \psi_t).$

rank β_x : the rank of 2-vector $\beta_x, x \in X$

Type
$$(\mathcal{J}_{\beta})_x = n - 2 \operatorname{rank} \beta_x$$

$$(X, J, \omega)$$
: compact Kähler manifold $\Theta = T^{1,0}$

Deformations of generalized complex structures are parametrised by

$$H^2(X, \mathcal{O}_X) \oplus H^1(X, \Theta) \oplus H^0(X, \wedge^2 \Theta)$$

Obstruction space to deformations of generalized complex structures

 $H^{3}(X, \mathcal{O}_{X}) \oplus H^{2}(X, \Theta) \oplus H^{1}(X, \wedge^{2}\Theta) \oplus H^{0}(\wedge^{3}\Theta)$

If the obstruction space vanishes, then we obtain deformations of generalized Kähler structures parametrised by

 $H^{2}(X, \mathcal{O}_{X}) \oplus H^{1}(X, \Theta) \oplus H^{0}(X, \wedge^{2} \Theta) \oplus H^{1,1}(X)$

In general there are obstructions to deformations to generalized complexstructures