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How to unite them?
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Hence: need of an integrability condition. J
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so(TMOT™M, (,)) = {T [(Tx,y)+(x, Ty) = 0, x,y € TM&T"M}

The general form of such a T is (g _i\*> , With
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Identify B with (B O)'

Its exponential

eB = <1B ?) S SO(TM@ T*Ma<7>)

is called a B-field transform (or simply B-transform).
It acts by:

eB(X +a)=X+a+uxB.
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The Courant bracket

Integrability
An almost Dirac structure L is a Dirac structure if it is closed
under the Courant bracket:

X+, Y+08lc=I[X, Y]+Exﬂ—ﬁva—%d(bxﬂ—wa)

Twisted version (Severa & Weinstein): add :x¢yH, where H € Q3(M),
dH = 0.

Invariance under B-transforms
[€8(X +a),B(Y+B)]c=[X+a,Y+pblcedB=0

Conversely:
Aut(TM & T*M, (,),[,]c) = diffeo o B — transform, dB = 0.

@ Does not satisfy the Jacobi identity.
@ Reduces to usual bracket on vector fields.
@ Vanishes on forms.
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The Courant bracket as a derived bracket

Regard d, X and a as endomorphisms of the real algebra
Q*(M):

X(m)=uxn, a(n)=aAn
If [,] denotes the graded commutator in End(Q°*(M)), then

,CXOZZ[[X, d],Oé], LXda:_[[aa d]aX]7
and hence
[[X—|—Oé,d], Y+B] = [Xa Y] +£Xﬂ_ LydOé.

Thus
X+, Y+ Blc =sk([[X+a,d], Y+ 3])

It is a derived bracket. See, e.g. Y. Kosmann-Schwarzbach,
Lett. Math. Phys. 691(2004).

Remark /[x x] = [[tx, d], ty], hence the usual bracket is itself a
derived bracket.
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x € M is regular if, in some neighbourhood, 7(L) and *7(L) are
subbundles. Work only around regular points (dense set).

Let E = n(L). Then LN T*M = Ann(E), E* = T*M/Ann(E).
There exists a unique ¢ € Q?(E) such that:
L=L(Ee) ={X+a|XeE a=¢eX)}
Indeed e(X) :=*r(7~1(X) N L).
Conversely, for any subbundle £ C TM and ¢ € Q?(E), L(E,¢)
is almost Dirac.
TMN L =kere, *m(L) = Ann(TM N L).
L is integrable if and only if E is integrable and dge = 0.

If 7(L) = TM, the Dirac structure is uniquely identified by the
closed 2-form . Hence, it is a pre-symplectic structure.
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Description in terms of TM or T*M

Similarly, if F:=*r(L), there exists a unique bivector
n € N(TM) s.t.
L=L(F,np)={X+a|lacF,X|g=n(a)}
If r(L) = T*M, the Dirac structure is uniquely identified by the
bivector n. Hence, it is a Poisson structure.

Effect of a B-transform

eB(L(E,e)) = L(E,e +i*B), i:E— TM
Locally, there exist B s.t. €5(L) = E & AnnE.
Hence: Dirac geometry generalises foliations (¢ = 0).
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Spinorial description

Cl(TM & T*M) acts on A*(T*M) by:
(X+a)-E=ixE+aNng.
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Pure spinors

For¢ #0, let Le :== {X + a| (X + a) - £ = 0} (the null-space).
L, is isotropic.

¢ is pure if L¢ is maximally isotropic.

Examples

E=1eN(T*M)is pure: Ly = L(TM, 0).

0 € Q'(M) is pure: Ly = L(ker6,0).

From Lg.c = p(g)Le, 9 € Spin(TM & T*M), follows that:
¢ =eP A1 =ePB, ePh are again pure.
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Spinorial description

Inverse construction

Let L = L(E,0) = E & Ann(E), codim E = k.

Let{ =61 A--- A Bk € det(Ann(E)) \ {0}, arbitrary. Then:
(X+a)-£=0< Xe E,ac Ann(E).

Hence: L(E, Q) is associated to the pure spinor line
(det(Ann(E)) C QK(M).

But: any L(E, <) = eBL(E,0) with ,*B = ¢.

Any L(E,¢) is described by a pure spinor line
eB det(Ann(E)), *B = «.

Integrability in spinorial language (Gualtieri)
An almost Dirac structure L corresponding to the pure spinor
line U is Courant involutive < for any p € U there exists
X+ae(TMa T*M) @ C such that

dp=(X+a):p.
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manifolds, mapping regular points into regular points.
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Foralinear ¢ : (V,Ly) — (W, Lw), set:

p«(Lv) ={p(X) +a| X+ ¢ a € Ly}

o (Lw) = {X+ ¢ alp(X) +a e Lw}.
One verifies ¢.(Ly), resp. ¢*(Lw), is linear almost Dirac
structure on V, resp. W. Moreover:

pu(L(Ev.<)) = L(F(Ev nkerdyp)'<, &),
©*(L(Ew, 1)) = L(F (Ew), F* 1)),
where £ is characterized by f*(&) = € on (Ey N ker p)==.

The smooth setting

Let o : (M, Ly) — (N, Ln) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.

(i) If Ly is integrable, ¢.(Ly) = Ly and ¢ surjective, then Ly is
integrable.

(i) If Ly is integrable and o*(Ln) = L. then Ly is integrable.

| A\
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Bursztyn & Weinstein)

Let L be a Dirac structure on M such that *x(L) is a subbundle
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Then, locally, there exist submersions ¢ on M such that ¢.(L) is
a Poisson structure and L = ¢*(¢«(L)).

These submersions are (germ) unique, up to Poisson
diffeomorphisms of their codomains.
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Sketch of proof

TM n L is a subbundle of TM, tangent to a foliation as L is integrable.
Let F :=*n(L) = Ann(TM N L) and L = L(F,n), n € A>F*. (Hence F
is locally spanned by the differentials of functions which are basic with
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Sketch of proof

TM n L is a subbundle of TM, tangent to a foliation as L is integrable.
Let F :=*n(L) = Ann(TM N L) and L = L(F,n), n € A>F*. (Hence F
is locally spanned by the differentials of functions which are basic with
respectto TM N L.)

For f,g € C*(M), s.t. df,dg € F,take X, Y s.t. X +df, Y +dg € L.
Then n(df, dg) = X(g) = —Y(f) and

[X+df, Y+ dglc = [X, Y]+ d(n(df,dg)), hence n(df, dg) is basic
w.rt. TMN L. )
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In terms of maximally isotropic subbundle

Lc(TM@® T*M)® C, s.t. LN L= {0} (of O real index).
More particular than a complex Dirac structure.
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Equivalent tensorial definition

Existence of 7 € End(TM & T*M) with
j2:_1 andj*:_j(@ <'~77\7>:<7>)
Hence: Reduction from O(2n,2n) to U(n, n).
L= (TM @ T*M)'0, j.e. the i-eigenspace of 7.

In terms of L(E, ¢)

Now E = 7(L) ¢ TM ® C and ¢ is complex.
L(E,¢) is maximally isotropic. It has O real index <

@ E+E=TM®Cand
@ Im(e|-g) is non-degenerate.




Spinorial description

Complexify the spinorial description of almost Dirac structures
and take care about the additional conditions.



Spinorial description

Complexify the spinorial description of almost Dirac structures
and take care about the additional conditions.

Every maximally isotropic L C (TM & T*M) & C corresponds to
a pure spinor line generated by a ¢, = eftivQ.

LNL={0} e w"*AQAQ#£0.
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Courant integrability

Generalized complex structure=Courant integrable almost
generalized complex structure.

Generalized complex structure = complex Dirac structure with
LnL={0}.

y

Properties around regular points

E = (L) is involutive and E N E = A ® C with integrable A.
The transverse to A has complex structure. Conversely:

Theorem (Gualtieri)

Let E be a subbundle in TM ® C, € € Q?(E*).
L(E,¢) is a generalized complex structure <

@ E is involutive and
o dEE =0.
Hence: A has symplectic leaves.
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Examples

The extreme cases

_ -1
Symplectic: 7, = <2 % >

0o J
By B-field transformations: a.g.c. of symplectic or complex type.
Products 1 @ J2, €.g. on (M, J) x (N,w).

Almost complex: J,; = <_J s )
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Mixed examples

M hyperkéahler with hypercomplex structure (/, J, K). Set:
Ji =sintJ +costr,,, tel0,7/2].

Nilmanifolds (Cavalcanti & Gualtieri)

5 classes of 6-dimensional nilmanifolds with no complex or
symplectic structures.
All of them admit generalized complex structures.
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Local structure around regular points

Generalized Darboux theorem (Gualtieri)

Locally, up to diffeomorphisms and B-field transforms, a
generalized complex manifold is equivalent to

((Ckv JO) X (RQn_2k7 WO)'

Here Jy, resp. wy is the standard complex structure, resp.
symplectic form, of CK, resp. R27—2k,

Sketch of proof

Write L = L(E, ¢) with E involutive and dge = 0.

Locally, the transverse to the foliation £ N E has complex structure.
Hence, the local description of M is {Jx, ... 0Xon_2k, 021, . ..,0Zk}.
Choose B + iw s.t. t*(B + iw) = ¢ to write the generator of the pure
spinor bundle as p = €8+« Q with Q = dz; A --- A dzx and
WKAQAQ#0.dp=0.

Use Darboux-Weinstein to obtain the local diffeo ¢, preserving the
leaves, and s.t. ¢*w|gen-2kx {pr.} = Wo-

Q is not affected by ¢ as z; are constant along leaves.

L is now represented by ¢*p = &*Q with A = ¢*B + ip*w.

Modify A such that ¢*p = B +i«0Q with B’ real closed 2-form.




Normal form

Theorem
Locally, up to B-field transforms, 7 can be put into the normal

form: .
_ n
(5 %)

@ Fis an integrable f-structure:

e F® + F =0 (corresponds to Jy extended with 0 on the
transverse).

e Accordingly, TM = T'"M @ T%'M g T°M.

e integrability means that 7'M and T%'M ¢ T°M are closed
under Lie bracket.

@ w|oy is symplectic, w|r1,0pq 70,119 = 0.
@ 1 :=mo J|r-m is a Poisson bivector.

where
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Theorem
Locally, up to B-field transforms, 7 can be put into the normal

form: .
_ n
(5 %)

@ Fis an integrable f-structure:

e F® + F =0 (corresponds to Jy extended with 0 on the
transverse).

e Accordingly, TM = T'"M @ T%'M g T°M.

e integrability means that 7'M and T%'M ¢ T°M are closed
under Lie bracket.

@ w|oy is symplectic, w|r1,0pq 70,119 = 0.
@ 1 :=mo J|r-m is a Poisson bivector.

where

f-structures will appear canonically on generalized Kéhler manifolds.

V.
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The difficulty is to handle both covariant and contravariant
aspect without restricting only to diffeomorphisms.
The most considered is:
Crainic’s definition
Requires
@ v.(nm) = nn, hence ¢ is Poisson.

@ ¢©*(wnm) = wn, hence ¢ is symplectic, and
@ f, o Fy = Fyof,, hence ¢ is f-linear.

Example
Let (M, J) be a complex manifold, B € Q?(M).

Jy= ( OJ j)*) and eB.7,e B = <—BJ _JJ*B 3*)

1y (M, J)) — (M, B 7,eB) satisfies the conditions if and
only if BJ = —J*B, i.e. Bis of type (1,1).

Hence: the definition is not invariant to B-transforms.

No satisfactory definition up to now.




To be continued...




t

by



To be continued...
by

Gil Cavalcanti



