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Symplectic and Poisson structures

Symplectic
A closed, non-degenerate 2-form ω : TM → T ∗M.
Induces a Poisson bracket by

{f , g} = ω(df ]ω , dg]ω)

Poisson
A Poisson bracket {, } on C∞(M) (skew-symmetric, derivation,
Jacobi identity).
Induces a η : T ∗M → TM, by

df 7→ Xf , Xf (g) = {f , g}.
Equivalently, η can be viewed as a bivector η ∈ H0(M, Λ2TM)
satisfying:

〈df ∧ dg, η〉 = {f , g}, [η, η] = 0.

How to unite them?



Symplectic and Poisson structures

Symplectic
A closed, non-degenerate 2-form ω : TM → T ∗M.
Induces a Poisson bracket by

{f , g} = ω(df ]ω , dg]ω)

Poisson
A Poisson bracket {, } on C∞(M) (skew-symmetric, derivation,
Jacobi identity).

Induces a η : T ∗M → TM, by
df 7→ Xf , Xf (g) = {f , g}.

Equivalently, η can be viewed as a bivector η ∈ H0(M, Λ2TM)
satisfying:

〈df ∧ dg, η〉 = {f , g}, [η, η] = 0.

How to unite them?



Symplectic and Poisson structures

Symplectic
A closed, non-degenerate 2-form ω : TM → T ∗M.
Induces a Poisson bracket by

{f , g} = ω(df ]ω , dg]ω)

Poisson
A Poisson bracket {, } on C∞(M) (skew-symmetric, derivation,
Jacobi identity).
Induces a η : T ∗M → TM, by

df 7→ Xf , Xf (g) = {f , g}.

Equivalently, η can be viewed as a bivector η ∈ H0(M, Λ2TM)
satisfying:

〈df ∧ dg, η〉 = {f , g}, [η, η] = 0.

How to unite them?



Symplectic and Poisson structures

Symplectic
A closed, non-degenerate 2-form ω : TM → T ∗M.
Induces a Poisson bracket by

{f , g} = ω(df ]ω , dg]ω)

Poisson
A Poisson bracket {, } on C∞(M) (skew-symmetric, derivation,
Jacobi identity).
Induces a η : T ∗M → TM, by

df 7→ Xf , Xf (g) = {f , g}.
Equivalently, η can be viewed as a bivector η ∈ H0(M, Λ2TM)
satisfying:

〈df ∧ dg, η〉 = {f , g}, [η, η] = 0.

How to unite them?



Symplectic and Poisson structures

Symplectic
A closed, non-degenerate 2-form ω : TM → T ∗M.
Induces a Poisson bracket by

{f , g} = ω(df ]ω , dg]ω)

Poisson
A Poisson bracket {, } on C∞(M) (skew-symmetric, derivation,
Jacobi identity).
Induces a η : T ∗M → TM, by

df 7→ Xf , Xf (g) = {f , g}.
Equivalently, η can be viewed as a bivector η ∈ H0(M, Λ2TM)
satisfying:

〈df ∧ dg, η〉 = {f , g}, [η, η] = 0.

How to unite them?



Real Dirac structures

Graphs of both ω and η are subbundles L ⊂ TM ⊕ T ∗M,
isotropic (by skew-symmetry) w.r.t. the inner product

〈X + α, Y + β〉 =
1
2
(α(Y ) + β(X ))

Almost Dirac structure (Courant & Weinstein 1988, Courant
1990)
A maximally isotropic subbundle L ⊂ TM ⊕ T ∗M w.r.t. the
above inner product.

This captures only the objects ω and η , not the closedness of ω
and the vanishing of the Schouten bracket [η, η].

Hence: need of an integrability condition.
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B-transforms

The orthogonal group SO(TM ⊕ T ∗M, 〈, 〉) has Lie algebra

so(TM⊕T ∗M, 〈, 〉) = {T | 〈Tx , y〉+〈x , Ty〉 = 0, x , y ∈ TM⊕T ∗M}

The general form of such a T is
(

A β
B −A∗

)
, with

A ∈ End(TM), B ∈ Ω2(M), β ∈ Λ2(TM).
Hence: various particular cases. Important case: A = 0, β = 0.

Identify B with
(

0 0
B 0

)
.

Its exponential

eB =

(
1 0
B 1

)
∈ SO(TM ⊕ T ∗M, 〈, 〉)

is called a B-field transform (or simply B-transform).
It acts by:

eB(X + α) = X + α + ιX B.
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The Courant bracket

Integrability

An almost Dirac structure L is a Dirac structure if it is closed
under the Courant bracket:

[X + α, Y + β]C = [X , Y ] + LX β − LY α− 1
2

d(ιX β − ιY α)

Twisted version (Severa & Weinstein): add ιX ιY H, where H ∈ Ω3(M),
dH = 0.

Invariance under B-transforms

[eB(X + α), eB(Y + β)]C = [X + α, Y + β]C ⇔ dB = 0

Conversely:
Aut(TM ⊕ T ∗M, 〈, 〉, [, ]C) = diffeo ◦ B− transform, dB = 0.

Does not satisfy the Jacobi identity.
Reduces to usual bracket on vector fields.
Vanishes on forms.
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The Courant bracket as a derived bracket

Regard d , X and α as endomorphisms of the real algebra
Ω•(M):

X (η) = ιX η, α(η) = α ∧ η

If [, ] denotes the graded commutator in End(Ω•(M)), then

LX α = [[X , d ], α], ιX dα = −[[α, d ], X ],

and hence

[[X + α, d ], Y + β] = [X , Y ] + LX β − ιY dα.

Thus
[X + α, Y + β]C = sk([[X + α, d ], Y + β])

It is a derived bracket. See, e.g. Y. Kosmann-Schwarzbach,
Lett. Math. Phys. 691(2004).
Remark ι[X ,X ] = [[ιX , d ], ιY ], hence the usual bracket is itself a
derived bracket.
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Description in terms of TM or T ∗M

Let π : TM ⊕ T ∗M → TM, ∗π : TM ⊕ T ∗M → T ∗M.

x ∈ M is regular if, in some neighbourhood, π(L) and ∗π(L) are
subbundles. Work only around regular points (dense set).

Let E = π(L). Then L ∩ T ∗M = Ann(E), E∗ = T ∗M/Ann(E).
There exists a unique ε ∈ Ω2(E) such that:

L = L(E , ε) := {X + α |X ∈ E , α|E = ε(X )}
Indeed ε(X ) :=∗π(π−1(X ) ∩ L).
Conversely, for any subbundle E ⊆ TM and ε ∈ Ω2(E), L(E , ε)
is almost Dirac.
TM ∩ L = ker ε, ∗π(L) = Ann(TM ∩ L).
L is integrable if and only if E is integrable and dEε = 0.

If π(L) = TM, the Dirac structure is uniquely identified by the
closed 2-form ε. Hence, it is a pre-symplectic structure.
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Description in terms of TM or T ∗M

Similarly, if F :=∗π(L), there exists a unique bivector
η ∈ Λ2(TM) s.t.

L = L(F , η) := {X + α |α ∈ F , X |F = η(α)}
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Spinorial description

Cl(TM ⊕ T ∗M) acts on Λ•(T ∗M) by:
(X + α) · ξ = ιX ξ + α ∧ ξ.

Pure spinors

For ξ 6= 0, let Lξ := {X + α | (X + α) · ξ = 0} (the null-space).
Lξ is isotropic.
ξ is pure if Lξ is maximally isotropic.

Examples

ξ = 1 ∈ Λ•(T ∗M) is pure: L1 = L(TM, 0).
θ ∈ Ω1(M) is pure: Lθ = L(ker θ, 0).
From Lg·ξ = ρ(g)Lξ, g ∈ Spin(TM ⊕ T ∗M), follows that:
ξ = eB ∧ 1 = eB, eBθ are again pure.
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Spinorial description

Inverse construction
Let L = L(E , 0) = E ⊕Ann(E), codim E = k .

Let ξ = θ1 ∧ · · · ∧ θk ∈ det(Ann(E)) \ {0}, arbitrary. Then:
(X + α) · ξ = 0 ⇔ X ∈ E , α ∈ Ann(E).
Hence: L(E , 0) is associated to the pure spinor line
〈det(Ann(E)〉 ⊂ Ωk (M).
But: any L(E , ε) = eBL(E , 0) with ι∗B = ε.

Any L(E , ε) is described by a pure spinor line
eB det(Ann(E)), ι∗B = ε.

Integrability in spinorial language (Gualtieri)
An almost Dirac structure L corresponding to the pure spinor
line U is Courant involutive ⇔ for any ρ ∈ U there exists
X + α ∈ (TM ⊕ T ∗M)⊗ C such that

dρ = (X + α) · ρ.
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Push forward, pull back of (almost) Dirac structures

The linear setting

For a linear ϕ : (V , LV ) → (W , LW ), set:
ϕ∗(LV ) = {ϕ(X ) + α |X + ϕ∗α ∈ LV}
ϕ∗(LW ) = {X + ϕ∗α |ϕ(X ) + α ∈ LW}.

One verifies ϕ∗(LV ), resp. ϕ∗(LW ), is linear almost Dirac
structure on V , resp. W . Moreover:

ϕ∗(L(EV , ε)) = L(f (EV ∩ ker dϕ)⊥ε , ε̂),

ϕ∗(L(EW , µ)) = L(f−1(EW ), f ∗µ)),

where ε̂ is characterized by f ∗(ε̂) = ε on (EV ∩ ker ϕ)⊥ε .

The smooth setting

Let ϕ : (M, LM) → (N, LN) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.
(i) If LM is integrable, ϕ∗(LM) = LN and ϕ surjective, then LN is
integrable.
(ii) If LN is integrable and ϕ∗(LN) = LM , then LM is integrable.



Push forward, pull back of (almost) Dirac structures

The linear setting

For a linear ϕ : (V , LV ) → (W , LW ), set:
ϕ∗(LV ) = {ϕ(X ) + α |X + ϕ∗α ∈ LV}
ϕ∗(LW ) = {X + ϕ∗α |ϕ(X ) + α ∈ LW}.

One verifies ϕ∗(LV ), resp. ϕ∗(LW ), is linear almost Dirac
structure on V , resp. W .

Moreover:
ϕ∗(L(EV , ε)) = L(f (EV ∩ ker dϕ)⊥ε , ε̂),

ϕ∗(L(EW , µ)) = L(f−1(EW ), f ∗µ)),

where ε̂ is characterized by f ∗(ε̂) = ε on (EV ∩ ker ϕ)⊥ε .

The smooth setting

Let ϕ : (M, LM) → (N, LN) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.
(i) If LM is integrable, ϕ∗(LM) = LN and ϕ surjective, then LN is
integrable.
(ii) If LN is integrable and ϕ∗(LN) = LM , then LM is integrable.



Push forward, pull back of (almost) Dirac structures

The linear setting

For a linear ϕ : (V , LV ) → (W , LW ), set:
ϕ∗(LV ) = {ϕ(X ) + α |X + ϕ∗α ∈ LV}
ϕ∗(LW ) = {X + ϕ∗α |ϕ(X ) + α ∈ LW}.

One verifies ϕ∗(LV ), resp. ϕ∗(LW ), is linear almost Dirac
structure on V , resp. W . Moreover:

ϕ∗(L(EV , ε)) = L(f (EV ∩ ker dϕ)⊥ε , ε̂),

ϕ∗(L(EW , µ)) = L(f−1(EW ), f ∗µ)),

where ε̂ is characterized by f ∗(ε̂) = ε on (EV ∩ ker ϕ)⊥ε .

The smooth setting

Let ϕ : (M, LM) → (N, LN) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.
(i) If LM is integrable, ϕ∗(LM) = LN and ϕ surjective, then LN is
integrable.
(ii) If LN is integrable and ϕ∗(LN) = LM , then LM is integrable.



Push forward, pull back of (almost) Dirac structures

The linear setting

For a linear ϕ : (V , LV ) → (W , LW ), set:
ϕ∗(LV ) = {ϕ(X ) + α |X + ϕ∗α ∈ LV}
ϕ∗(LW ) = {X + ϕ∗α |ϕ(X ) + α ∈ LW}.

One verifies ϕ∗(LV ), resp. ϕ∗(LW ), is linear almost Dirac
structure on V , resp. W . Moreover:

ϕ∗(L(EV , ε)) = L(f (EV ∩ ker dϕ)⊥ε , ε̂),

ϕ∗(L(EW , µ)) = L(f−1(EW ), f ∗µ)),

where ε̂ is characterized by f ∗(ε̂) = ε on (EV ∩ ker ϕ)⊥ε .

The smooth setting

Let ϕ : (M, LM) → (N, LN) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.

(i) If LM is integrable, ϕ∗(LM) = LN and ϕ surjective, then LN is
integrable.
(ii) If LN is integrable and ϕ∗(LN) = LM , then LM is integrable.



Push forward, pull back of (almost) Dirac structures

The linear setting

For a linear ϕ : (V , LV ) → (W , LW ), set:
ϕ∗(LV ) = {ϕ(X ) + α |X + ϕ∗α ∈ LV}
ϕ∗(LW ) = {X + ϕ∗α |ϕ(X ) + α ∈ LW}.

One verifies ϕ∗(LV ), resp. ϕ∗(LW ), is linear almost Dirac
structure on V , resp. W . Moreover:

ϕ∗(L(EV , ε)) = L(f (EV ∩ ker dϕ)⊥ε , ε̂),

ϕ∗(L(EW , µ)) = L(f−1(EW ), f ∗µ)),

where ε̂ is characterized by f ∗(ε̂) = ε on (EV ∩ ker ϕ)⊥ε .

The smooth setting

Let ϕ : (M, LM) → (N, LN) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.
(i) If LM is integrable, ϕ∗(LM) = LN and ϕ surjective, then LN is
integrable.

(ii) If LN is integrable and ϕ∗(LN) = LM , then LM is integrable.



Push forward, pull back of (almost) Dirac structures

The linear setting

For a linear ϕ : (V , LV ) → (W , LW ), set:
ϕ∗(LV ) = {ϕ(X ) + α |X + ϕ∗α ∈ LV}
ϕ∗(LW ) = {X + ϕ∗α |ϕ(X ) + α ∈ LW}.

One verifies ϕ∗(LV ), resp. ϕ∗(LW ), is linear almost Dirac
structure on V , resp. W . Moreover:

ϕ∗(L(EV , ε)) = L(f (EV ∩ ker dϕ)⊥ε , ε̂),

ϕ∗(L(EW , µ)) = L(f−1(EW ), f ∗µ)),

where ε̂ is characterized by f ∗(ε̂) = ε on (EV ∩ ker ϕ)⊥ε .

The smooth setting

Let ϕ : (M, LM) → (N, LN) be smooth, between almost Dirac
manifolds, mapping regular points into regular points.
(i) If LM is integrable, ϕ∗(LM) = LN and ϕ surjective, then LN is
integrable.
(ii) If LN is integrable and ϕ∗(LN) = LM , then LM is integrable.



Local structure (cf. Courant, Bursztyn & Radko,
Bursztyn & Weinstein)

Let L be a Dirac structure on M such that ∗π(L) is a subbundle
of T ∗M.
Then, locally, there exist submersions ϕ on M such that ϕ∗(L) is
a Poisson structure and L = ϕ∗(ϕ∗(L)).
These submersions are (germ) unique, up to Poisson
diffeomorphisms of their codomains.

Sketch of proof
TM ∩ L is a subbundle of TM, tangent to a foliation as L is integrable.
Let F :=∗π(L) = Ann(TM ∩ L) and L = L(F , η), η ∈ Λ2F ∗. (Hence F
is locally spanned by the differentials of functions which are basic with
respect to TM ∩ L.)
For f , g ∈ C∞(M), s.t. df , dg ∈ F , take X , Y s.t. X + df , Y + dg ∈ L.
Then η(df , dg) = X (g) = −Y (f ) and
[X + df , Y + dg]C = [X , Y ] + d(η(df , dg)), hence η(df , dg) is basic
w.r.t. TM ∩ L .
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Almost generalized complex structures

In terms of maximally isotropic subbundle

L ⊂ (TM ⊕ T ∗M)⊗ C, s.t. L ∩ L = {0} (of 0 real index).

More particular than a complex Dirac structure.

Equivalent tensorial definition

Existence of J ∈ End(TM ⊕ T ∗M) with
J 2 = −1 and J ∗ = −J (⇔ 〈J ·,J ·〉 = 〈, 〉).
Hence: Reduction from O(2n, 2n) to U(n, n).
L = (TM ⊕ T ∗M)1,0, i.e. the i-eigenspace of J .

In terms of L(E , ε)

Now E = π(L) ⊂ TM ⊗ C and ε is complex.
L(E , ε) is maximally isotropic. It has 0 real index ⇔

E + E = TM ⊗ C and
Im(ε|E∩E) is non-degenerate.
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More particular than a complex Dirac structure.

Equivalent tensorial definition
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Spinorial description

Complexify the spinorial description of almost Dirac structures
and take care about the additional conditions.

Every maximally isotropic L ⊂ (TM ⊕ T ∗M)⊗ C corresponds to
a pure spinor line generated by a ξL = eB+iωΩ.

L ∩ L = {0} ⇔ ωn−k ∧ Ω ∧ Ω 6= 0.
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Courant integrability

Definition
Generalized complex structure=Courant integrable almost
generalized complex structure.

Generalized complex structure = complex Dirac structure with
L ∩ L = {0}.

Properties around regular points

E = π(L) is involutive and E ∩ E = ∆⊗ C with integrable ∆.
The transverse to ∆ has complex structure. Conversely:

Theorem (Gualtieri)

Let E be a subbundle in TM ⊗ C, ε ∈ Ω2(E∗).
L(E , ε) is a generalized complex structure ⇔

E is involutive and
dEε = 0.

Hence: ∆ has symplectic leaves.
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Examples

The extreme cases

Symplectic: Jω =

(
0 −ω−1

ω 0

)
.

Almost complex: JJ =

(
−J 0
0 J∗

)
.

By B-field transformations: a.g.c. of symplectic or complex type.
Products J1 ⊕ J2, e.g. on (M, J)× (N, ω).

Mixed examples

M hyperkähler with hypercomplex structure (I, J, K ). Set:
Jt = sin tJI + cos tJωJ , t ∈ [0, π/2].

Nilmanifolds (Cavalcanti & Gualtieri)
5 classes of 6-dimensional nilmanifolds with no complex or
symplectic structures.
All of them admit generalized complex structures.
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Local structure around regular points
Generalized Darboux theorem (Gualtieri)
Locally, up to diffeomorphisms and B-field transforms, a
generalized complex manifold is equivalent to
(Ck , J0)× (R2n−2k , ω0).

Here J0, resp. ω0 is the standard complex structure, resp.
symplectic form, of Ck , resp. R2n−2k .

Sketch of proof

Write L = L(E , ε) with E involutive and dEε = 0.
Locally, the transverse to the foliation E ∩ E has complex structure.
Hence, the local description of M is {∂x1, . . . ∂x2n−2k , ∂z1, . . . , ∂zk}.
Choose B + iω s.t. ι∗(B + iω) = ε to write the generator of the pure
spinor bundle as ρ = eB+iωΩ with Ω = dz1 ∧ · · · ∧ dzk and
ωn−k ∧ Ω ∧ Ω 6= 0. dρ = 0.
Use Darboux-Weinstein to obtain the local diffeo ϕ, preserving the
leaves, and s.t. ϕ∗ω|R2n−2k×{pt.} = ω0.
Ω is not affected by ϕ as zi are constant along leaves.
L is now represented by ϕ∗ρ = eAΩ with A = ϕ∗B + iϕ∗ω.
Modify A such that ϕ∗ρ = eB′+iω0Ω with B′ real closed 2-form.
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Normal form

Theorem
Locally, up to B-field transforms, J can be put into the normal
form:

J =

(
F η
−ω −F ∗

)
,

where

F is an integrable f -structure:
F 3 + F = 0 (corresponds to J0 extended with 0 on the
transverse).
Accordingly, TM = T 1,0M ⊕ T 0,1M ⊕ T 0M.
integrability means that T 1,0M and T 0,1M ⊕ T 0M are closed
under Lie bracket.

ω|T 0M is symplectic, ω|T 1,0M⊕T 0,1M = 0.
η := π ◦ J |T∗M is a Poisson bivector.

f -structures will appear canonically on generalized Kähler manifolds.
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Morphisms

The difficulty is to handle both covariant and contravariant
aspect without restricting only to diffeomorphisms.

The most considered is:

Crainic’s definition
Requires

ϕ∗(ηM) = ηN , hence ϕ is Poisson.
ϕ∗(ωM) = ωN , hence ϕ is symplectic, and
f∗ ◦ FM = FN ◦ f∗, hence ϕ is f -linear.

Example

Let (M, J) be a complex manifold, B ∈ Ω2(M).

JJ =

(
−J 0
0 J∗

)
and eBJJe−B =

(
−J 0

−BJ − J∗B J∗

)
.

1M : (M,JJ) → (M, eBJJe−B) satisfies the conditions if and
only if BJ = −J∗B, i.e. B is of type (1, 1).
Hence: the definition is not invariant to B-transforms.
No satisfactory definition up to now.
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only if BJ = −J∗B, i.e. B is of type (1, 1).
Hence: the definition is not invariant to B-transforms.
No satisfactory definition up to now.
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