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Linear CR-structure on V
Cc Vst CnC=/{0}.

Linear co-CR-structure on V

Dc VEst. D+ D= VC.

@ Co-CR is the dual notion to CR:

@ Dis co-CR < Ann(D) is CRin (V©)*.

@ If Jis a complex structure on V, then the corresponding
V19 and V%' are both CR and co-CR.
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Linear CR and co-CR maps

t:(V,Cy) — (W,Cy) linears.t. {(Cy) C Cw.
t:(V,Dy) — (W, Dy) linear s.t. {(Dy) C Dw.
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Linear f-structure on V
F € End(V) with F3 + F = 0. Accordingly:
@ V€ =V0g V0 g VO corresponding to the eigenvalues
0, +i. Moreover:

@ C:= V'0is a CR structure,
@ D:= V%a V'0is a co-CR structure.

f-linear maps

t:(V,Fy) — (W,Fy)linears.t. to Fy = Fy ot
Equivalently: t(Cy) C Cw and t(Dy) C Dy .

tis f-linear < it is both CR and co-CR map.

| A\

A\




CR, co-CR and f-structures
in generalized complex geometry

Linear generalized complex structures
L=L(E,e) c V€& (VE)* which is




CR, co-CR and f-structures
in generalized complex geometry

Linear generalized complex structures

L=L(E,e) c V€& (VE)* which is
@ maximally isotropic




CR, co-CR and f-structures
in generalized complex geometry

Linear generalized complex structures
L=L(E,e) c V€& (VE)* which is

@ maximally isotropic

@ of 0 real index: LN L = {0}.




CR, co-CR and f-structures
in generalized complex geometry

Linear generalized complex structures
L=L(E,e) c V€& (VE)* which is

@ maximally isotropic

@ of 0 real index: LN L = {0}.

Induced structures

@ As E + E = V€, Eis a co-CR structure.




CR, co-CR and f-structures
in generalized complex geometry

Linear generalized complex structures
L=L(E,e) c V€& (VE)* which is

@ maximally isotropic

@ of 0 real index: LN L = {0}.

Induced structures

@ As E+ E = V€, Eis a co-CR structure.
@ ENE = A€ and Im(z| ) is non-degenerate.




CR, co-CR and f-structures
in generalized complex geometry

Linear generalized complex structures
L=L(E,e) c V€& (VE)* which is

@ maximally isotropic

@ of 0 real index: LN L = {0}.

Induced structures

@ As E+ E = V€, Eis a co-CR structure.
@ ENE = A€ and Im(z| ) is non-degenerate.

Call L(E N E, Im(¢|z~£)) the associated linear Poisson
structure.
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Generalized complex structure in normal form

Comepatible f structure and 2-form
If there exist F and w € A?V* s.t.
@ w|yo is non-degenerate.
@ Kerw = V1.0 g V01,

and L = L(V° @ V!0 iw), then L is in normal form.
The associated linear Poisson structure is then L(V°,w), with
bivector denoted 7.

Normal form in tensorial language

The corresponding J is written as J = (_I; _7,7__*>
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Putting a generalized complex structure in normal form

Theorem
Given a generalized complex structure L and a f-structure F s.t.
E = n(L) is the co-CR structure associated to F,

There exists a unique B € A?V* s.t. €B(L) is in normal form,
with associated f-structure F.

B_ —Re(¢) onV°
- onVand V0 g V1.0

The only freedom is in the choice of F and, in fact, only the
splitting of V® @ V1.0 is to be chosen.
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Holomorphic linear maps

Definition
Alineart: (V,Ly) — (W, Lwy) is holomorphic if it is
@ Poisson and

@ co-CR
w.r.t. the associated structures.

The definition is invariant under B-transforms. J

Equivalences
@ tis holomorphic.
@ Up to B-transforms, Ly and Ly are in canonical form and ¢
is Poisson f-linear.
@ Upto B-transforms, t = t; @ b, with t; (resp. ) a Poisson
(resp. complex) map between symplectic (resp. complex)
vector spaces.
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The smooth picture

A generalized complex structure on M induces almost CR,
co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For
f-structures, integrability is defined as integrability of the associated
CR and co-CR structures.

f: M — Nis CR, co-CR, f-holomorphic if £, is ...

Definition
@ : M — N is holomorphic if Yx € M regular, 3U > x s.t., up to

B-transforms of M and N, ¢|y is a Poisson, f-holomorphic map
between generalized complex structures in normal form.
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@ A holomorphic map takes regular points to regular points.

@ If  is diffeo, then holomorphicity is equivalent to
©«(Ly) = Ly up to B transforms.

@ Composition preserves holomorphicity.
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Induced Poisson maps

From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions
v:M— Psit. p.(L)is a Poisson structure and L = ¢*(¢«(L)).

one obtains:

Theorem

Let (M, Ly) and (N, Ly) be regular real analytic generalized
complex manifolds and let ¢ : M — N be a real analytic map.

If » is holomorphic then, locally, up to the complexification of a
real analytic B-field tranformation, the complexification of ¢
descends to a complex analytic Poisson morphism between the
canonical Poisson quotients.

v
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A class of examples on Riemann manifolds

Let (M, g) be generalized complex in normal form with

L= L(E,ie).

Choose a compatible f-structure F.

Quotient to T°M (integrable) to obtain local submersions

o: M— (N,J).

On N consider the canonical generalized complex structure 7. It is
in normal form.

As o is f-holomorphic between g.c. structures in normal form,
¢ is holomorphic.

Proposition

E is co-isotropic w.r.t. g¢ < ¢| g~ I8 pseudo-horizontally
conformal (p.h.c.) i.e. it pulls back (1, 0)-forms into isotropic
forms.

The notion comes from harmonic morphisms.
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Let ¢ : (M™2 g) — (N",J) be a p.h.c. submersion.

Let V = Kerp,, H = V1, w volume form on V.

Let F be the unique g-skew-symmetric f-structure on M s.t.
KerF =V, T°M @ T'OM = o /(T1ON), TOTM = o 1(TOTN),
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Let L = L(E,iw) (in normal form), with £ = V @ H'0.

L is integrable < J is integrable, V has minimal leaves and
AX,Y)=[X,Y]Vis (1,1) wrt. F.
For n =2, L integrable < ¢ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.:
the associated f-structure is g-skew,
the induced Poisson structure has rank 2,
lwll =1,

is locally of this form.
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E;, E; are coisotropic wrt gt

The skew-symmetric F; determined by E; and Ef are integrable
f-structures.
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Let V* be the i-eigenbundle of Jx.
Let L* = {X +(b+g)(X )|Xe Vi}

+

Theorem (Gualtieri)

Ly and L, Courant-integrable < L* integrable < J; integrable
and parallel w.rt. V* := V9 £+ Tg='h, h=db.

Canonical f-structures

Let E; = n(Lj) (j =1,2). Then E; = Vt4+ V-, E,=Vt+ V-,
Then Ef = VNV, Ey =V'n V- and hence:

E;, E; are coisotropic wrt gt

The skew-symmetric F; determined by E; and EjL are integrable
f-structures.

Holomorphic functions on (M, L) resp. (M, L) are
bi-holomorphic functions on (M, Jy, J_) resp. (M, Jy, —J_).
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Theorem: geometric properties of the distributions
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holomorphic on (M, J;.) < H* holomorphic on (M, J_.)

In either case, H* is a holomorphic foliation on (M, J..) and
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hence defines local submersions.
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Let (M, LM LM) and (N, LY, L)) with %}, and H}, integrable.
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Generalized Kahler manifolds with integrable H*

Let Ht = Ker(J, FJ_),V =(HT o H) .
HE, Vinvariant under Jy; J4 F J_ invertible on V.
H*, V distributions < Ly, L, regular.

| A

Theorem: geometric properties of the distributions

If Ly is regular, then: H™ integrable < H™ geodesic < H™
holomorphic on (M, J;.) < H* holomorphic on (M, J_.)

In either case, H* is a holomorphic foliation on (M, J..) and
(g,J+) is Kahler on its leaves.

Note that H* geodesic < (HT)! =V & H~ is a Riemannian foliation,
hence defines local submersions.

Corollary

Let (M, LM LM) and (N, LY, LY') with %}, and H}, integrable.
Then any holomorphic ¢ : (M, LM) — (N, LV) descends, locally,
w.r.t. the above Riemannian submersions, to a holomorphic
map between the Kahler quotients.

| \
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Products of Kahler manifolds
Let (M;, g, J;) K&hler manifolds, (j = 1,2).
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A generalization of a theorem of Apostolov-Gualtieri

Let (M;, g, J;) K&hler manifolds, (j = 1,2).
On M1 X M2 there are 2 non-equivalent g.K. structures:

@ the first product is just the Kéhler product structure,

@ the second product: Ly = L(T'OM; x TMs,iw,) and

L2 = L(T1’0M2 X TM1,iUJ1)

Both L; and L, are in normal form; the corresponding almost
f-structures are skew-adjoint (and, thus, unique with this
property).

From the geometric properties of the distributions we get:

Any generalized K&hler manifold with V = 0 (i.e. [J4,J-] = 0)
is, up to a unique B-field transformation, locally given by the
second product of two Kéhler manifolds.

In particular, h = db = 0.




Generalized Kahler manifolds with H~ = 0.

Tamed symplectic manifolds
(M, e,J) s.t. (JX, X) > 0, J and e~ 'J*¢c integrable, ds = 0.
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Example (cf. Hitchin '06)
Let (M, g, I, J, K) be hyperkahler and ¢ := —(w; + wy).
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Example (cf. Hitchin '06)

Let (M, g, /,J, K) be hyperkahler and ¢ := —(w; + wy).
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structure (g, b, J+,J-) = (9, w, J, K).




Generalized Kahler manifolds with = = 0.

Tamed symplectic manifolds
(M, e,J) s.t. (JX, X) > 0, J and ¢~ " J*¢ integrable, ds = 0.

Structure theorem (see also Gualtieri '07)

Let £ be non-degenerate on M and J almost complex structure.
Let J; = J, J_ = —~1J%. Let g, b be the symmetric and
skew-symmetric parts of eJ.

(M, e, J) is tamed symplectic < (g, b, J+,J_) is g.K. with

Jy + J_ invertible.

Up to a unique B- transform, any g.K. structure with J, + J_
invertible is of this kind.

Example (cf. Hitchin '06)

Let (M, g, I, J, K) be hyperkahler and ¢ := —(w; + wy).

Then (M, ¢, J) is tamed symplectic with associated g.K.
structure (g, b, J+,J-) = (9, w, J, K).

Here, Ly = L( TM(C, 2w —i(wy —wk)), Lo = L( TMC, —i(wy +wk))



Generalized Kahler manifolds with H~ = 0. Local

description

Corollary

A g.K. manifold with " integrable and H~ = 0is, up to a
unique B-transform, locally a product

(M x N, LM LN LM L) where (LY, L)) comes from a
Kahler structure on M and (LY, L) is a g.K. structure on N with
Ji +J- and J; — J_ invertible.

4



Generalized Kahler manifolds with H~ = 0.

Induced holomorphic Poisson structure (cf. Hitchin '06)

For a g.K. (M, Ly, L) coming from a tamed symplectic
structure, let p* : TMC — T1°M. Then p£(Ly) is a holomorphic
Poisson structure on (M, J.).
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The converse holds only if J;. — J_ is invertible. In this case,
p(Lz) are holomorphic symplectic structures.




Generalized Kahler manifolds with = = 0.

Induced holomorphic Poisson structure (cf. Hitchin '06)

For a g.K. (M, Ly, L) coming from a tamed symplectic
structure, let p* : TMC — T1°M. Then p£(Ly) is a holomorphic
Poisson structure on (M, J.).

The converse holds only if J;. — J_ is invertible. In this case,
p(Lz) are holomorphic symplectic structures.

The associated Poisson bivectors on (M, J1) are

1 _
- = —ns = 510y, J-]g '

The symplectic foliation associated to 7. is precisely V.




Holomorphic maps between generalized Kahler
manifolds with H~ = 0.

Induced holomorphic Poisson morphism

Let (M, LM, LMy and (N, LY, L)) be generalized Kahler
manifolds, with J¥ + J and JY + JV invertible, and let
¢ : M — N be a map.




Holomorphic maps between generalized Kahler
manifolds with H~ = 0.

Induced holomorphic Poisson morphism
Let (M, LM, LMy and (N, LY, L)) be generalized Kahler
manifolds, with J¥ + JM and J¥ + JN invertible, and let
¢ : M — N be a map.
If

@ ¢ : (M, LY — (N, L)) is holomorphic and,

@ atleast one of ¢ : (M, JV) — (N, JV) and

¢ (M, JM) — (N, JN) is holomorphic,

then ¢ is a holomorphic Poisson morphism between the
associated holomorphic Poisson structures.




