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The linear picture

V real vector space, dim V = n. V C = V ⊗ C.

Linear CR-structure on V

C ⊂ V C s.t. C ∩ C = {0}.

Linear co-CR-structure on V

D ⊂ V C s.t. D + D = V C.

Co-CR is the dual notion to CR:
D is co-CR ⇔ Ann(D) is CR in (V C)∗.
If J is a complex structure on V , then the corresponding
V 1,0 and V 0,1 are both CR and co-CR.

Linear CR and co-CR maps

t : (V , CV ) → (W , CW ) linear s.t. t(CV ) ⊆ CW .
t : (V , DV ) → (W , DW ) linear s.t. t(DV ) ⊆ DW .
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Linear picture

Linear f -structure on V

F ∈ End(V ) with F 3 + F = 0. Accordingly:
V C = V 0 ⊕ V 1,0 ⊕ V 0,1, corresponding to the eigenvalues
0, ±i. Moreover:

C := V 1,0 is a CR structure,
D := V 0 ⊕ V 1,0 is a co-CR structure.

f -linear maps

t : (V , FV ) → (W , FW ) linear s.t. t ◦ FV = FW ◦ t .
Equivalently: t(CV ) ⊆ CW and t(DV ) ⊆ DW .
t is f -linear ⇔ it is both CR and co-CR map.
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CR, co-CR and f -structures
in generalized complex geometry

Linear generalized complex structures

L = L(E , ε) ⊂ V C ⊕ (V C)∗ which is

maximally isotropic
of 0 real index: L ∩ L = {0}.

Induced structures

As E + E = V C, E is a co-CR structure.
E ∩ E = ∆C and Im(ε|E∩E) is non-degenerate.

Call L(E ∩ E , Im(ε|E∩E)) the associated linear Poisson
structure.



CR, co-CR and f -structures
in generalized complex geometry

Linear generalized complex structures

L = L(E , ε) ⊂ V C ⊕ (V C)∗ which is
maximally isotropic

of 0 real index: L ∩ L = {0}.

Induced structures

As E + E = V C, E is a co-CR structure.
E ∩ E = ∆C and Im(ε|E∩E) is non-degenerate.

Call L(E ∩ E , Im(ε|E∩E)) the associated linear Poisson
structure.



CR, co-CR and f -structures
in generalized complex geometry

Linear generalized complex structures

L = L(E , ε) ⊂ V C ⊕ (V C)∗ which is
maximally isotropic
of 0 real index: L ∩ L = {0}.

Induced structures

As E + E = V C, E is a co-CR structure.
E ∩ E = ∆C and Im(ε|E∩E) is non-degenerate.

Call L(E ∩ E , Im(ε|E∩E)) the associated linear Poisson
structure.



CR, co-CR and f -structures
in generalized complex geometry

Linear generalized complex structures

L = L(E , ε) ⊂ V C ⊕ (V C)∗ which is
maximally isotropic
of 0 real index: L ∩ L = {0}.

Induced structures

As E + E = V C, E is a co-CR structure.

E ∩ E = ∆C and Im(ε|E∩E) is non-degenerate.

Call L(E ∩ E , Im(ε|E∩E)) the associated linear Poisson
structure.



CR, co-CR and f -structures
in generalized complex geometry

Linear generalized complex structures

L = L(E , ε) ⊂ V C ⊕ (V C)∗ which is
maximally isotropic
of 0 real index: L ∩ L = {0}.

Induced structures

As E + E = V C, E is a co-CR structure.
E ∩ E = ∆C and Im(ε|E∩E) is non-degenerate.

Call L(E ∩ E , Im(ε|E∩E)) the associated linear Poisson
structure.



CR, co-CR and f -structures
in generalized complex geometry

Linear generalized complex structures

L = L(E , ε) ⊂ V C ⊕ (V C)∗ which is
maximally isotropic
of 0 real index: L ∩ L = {0}.

Induced structures

As E + E = V C, E is a co-CR structure.
E ∩ E = ∆C and Im(ε|E∩E) is non-degenerate.

Call L(E ∩ E , Im(ε|E∩E)) the associated linear Poisson
structure.



Generalized complex structure in normal form

Compatible f structure and 2-form

If there exist F and ω ∈ Λ2V ∗ s.t.
ω|V 0 is non-degenerate.

Kerω = V 1,0 ⊕ V 0,1,
and L = L(V 0 ⊕ V 1,0, iω), then L is in normal form.
The associated linear Poisson structure is then L(V 0, ω), with
bivector denoted η.

Normal form in tensorial language

The corresponding J is written as J =

(
F η
−ω −F ∗

)
.
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Putting a generalized complex structure in normal form

Theorem
Given a generalized complex structure L and a f -structure F s.t.
E = π(L) is the co-CR structure associated to F ,

There exists a unique B ∈ Λ2V ∗ s.t. eB(L) is in normal form,
with associated f -structure F .

B =

{
−Re(ε) on V0

−ε on V1,0 and V0 ⊗ V1,0 .

The only freedom is in the choice of F and, in fact, only the
splitting of V 0 ⊕ V 1,0 is to be chosen.
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Holomorphic linear maps

Definition
A linear t : (V , LV ) → (W , LW ) is holomorphic if it is

Poisson and
co-CR

w.r.t. the associated structures.

The definition is invariant under B-transforms.

Equivalences
t is holomorphic.
Up to B-transforms, LV and LW are in canonical form and t
is Poisson f -linear.
Up to B-transforms, t = t1 ⊕ t2, with t1 (resp. t2) a Poisson
(resp. complex) map between symplectic (resp. complex)
vector spaces.
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The smooth picture

A generalized complex structure on M induces almost CR,
co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For
f -structures, integrability is defined as integrability of the associated
CR and co-CR structures.
f : M → N is CR, co-CR, f -holomorphic if f∗ is ...

Definition
ϕ : M → N is holomorphic if ∀x ∈ M regular, ∃U 3 x s.t., up to
B-transforms of M and N, ϕ|U is a Poisson, f -holomorphic map
between generalized complex structures in normal form.

A holomorphic map takes regular points to regular points.
If ϕ is diffeo, then holomorphicity is equivalent to
ϕ∗(LM) = LN up to B transforms.
Composition preserves holomorphicity.
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Induced Poisson maps

From the

Local structure of Dirac manifolds
Locally, around regular points, there exist submersions
ϕ : M → P s.t. ϕ∗(L) is a Poisson structure and L = ϕ∗(ϕ∗(L)).

one obtains:

Theorem
Let (M, LM) and (N, LN) be regular real analytic generalized
complex manifolds and let ϕ : M → N be a real analytic map.
If ϕ is holomorphic then, locally, up to the complexification of a
real analytic B-field tranformation, the complexification of ϕ
descends to a complex analytic Poisson morphism between the
canonical Poisson quotients.
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A class of examples on Riemann manifolds

Let (M, g) be generalized complex in normal form with
L = L(E , iε).

Choose a compatible f -structure F .
Quotient to T 0M (integrable) to obtain local submersions
ϕ : M → (N, J).
On N consider the canonical generalized complex structure JJ . It is
in normal form.
As ϕ is f -holomorphic between g.c. structures in normal form,
ϕ is holomorphic.

Proposition

E is co-isotropic w.r.t. gC ⇔ ϕ|E∩E is pseudo-horizontally
conformal (p.h.c.) i.e. it pulls back (1, 0)-forms into isotropic
forms.
The notion comes from harmonic morphisms.
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Inverse construction

Let ϕ : (Mn+2, g) → (Nn, J) be a p.h.c. submersion.

Let V = Kerϕ∗, H = V⊥, ω volume form on V.
Let F be the unique g-skew-symmetric f -structure on M s.t.
KerF = V, T 0M ⊕ T 1,0M = ϕ−1

∗ (T 1,0N), T 0,1M = ϕ−1
∗ (T 0,1N),

ω|V is non-degenerate, Kerω = H ⇒ F , ω are compatible.
Let L = L(E , iω) (in normal form), with E = V ⊕H1,0.

L is integrable ⇔ J is integrable, V has minimal leaves and
A(X , Y ) := [X , Y ]v is (1, 1) w.r.t. F .
For n = 2, L integrable ⇔ ϕ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.:
the associated f -structure is g-skew,
the induced Poisson structure has rank 2,
‖ω‖ = 1,

is locally of this form.
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Generalized Kähler manifolds

(M, L1, L2) s.t. J1J2 = J2J1 and J1J2 < 0.

By projection on TM this gives (g, b, J+, J−).
Let V± be the i-eigenbundle of J±.
Let L± = {X + (b ± g)(X ) |X ∈ V±}.
Then L1 = L+ ⊕ L−, L2 = L+ ⊕ L−.
Theorem (Gualtieri)

L1 and L2 Courant-integrable ⇔ L± integrable ⇔ J± integrable
and parallel w.r.t. ∇± := ∇g ± 1

2g−1h, h = db.

Canonical f -structures

Let Ej = π(Lj) (j = 1, 2). Then E1 = V+ + V−, E2 = V+ + V−.
Then E⊥

1 = V+ ∩ V−, E⊥
2 = V+ ∩ V− and hence:

E1, E2 are coisotropic w.r.t. gC.
The skew-symmetric Fj determined by Ej and E⊥

j are integrable
f -structures.

Holomorphic functions on (M, L1) resp. (M, L2) are
bi-holomorphic functions on (M, J+, J−) resp. (M, J+,−J−).
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bi-holomorphic functions on (M, J+, J−) resp. (M, J+,−J−).



Generalized Kähler manifolds with integrable H+

Let H± = Ker(J+ ∓ J−), V = (H+ ⊕H−)⊥.

H±, V invariant under J±; J+ ∓ J− invertible on V.
H±, V distributions ⇔ L1, L2 regular.

Theorem: geometric properties of the distributions

If L1 is regular, then: H+ integrable ⇔ H+ geodesic ⇔ H+

holomorphic on (M, J+) ⇔ H+ holomorphic on (M, J−.)
In either case, H+ is a holomorphic foliation on (M, J±) and
(g, J±) is Kähler on its leaves.
Note that H+ geodesic ⇔ (H+)⊥ = V ⊕H− is a Riemannian foliation,
hence defines local submersions.

Corollary

Let (M, LM
1 , LM

2 ) and (N, LN
1 , LN

2 ) with H+
M and H+

N integrable.
Then any holomorphic ϕ : (M, LM

1 ) → (N, LN
1 ) descends, locally,

w.r.t. the above Riemannian submersions, to a holomorphic
map between the Kähler quotients.
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A generalization of a theorem of Apostolov-Gualtieri

Products of Kähler manifolds
Let (Mj , gj , Jj) Kähler manifolds, (j = 1, 2).
On M1 ×M2 there are 2 non-equivalent g.K. structures:

the first product is just the Kähler product structure,
the second product: L1 = L(T 1,0M1 × TM2, i ω2) and
L2 = L(T 1,0M2 × TM1, i ω1)

Both L1 and L2 are in normal form; the corresponding almost
f -structures are skew-adjoint (and, thus, unique with this
property).

From the geometric properties of the distributions we get:

Theorem
Any generalized Kähler manifold with V = 0 (i.e. [J+, J−] = 0)
is, up to a unique B-field transformation, locally given by the
second product of two Kähler manifolds.
In particular, h = db = 0.
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Generalized Kähler manifolds with H− = 0.

Tamed symplectic manifolds

(M, ε, J) s.t. ε(JX , X ) > 0, J and ε−1J∗ε integrable, dε = 0.

Structure theorem (see also Gualtieri ’07)
Let ε be non-degenerate on M and J almost complex structure.
Let J+ = J, J− = −ε−1J∗ε. Let g, b be the symmetric and
skew-symmetric parts of εJ.
(M, ε, J) is tamed symplectic ⇔ (g, b, J+, J−) is g.K. with
J+ + J− invertible.
Up to a unique B- transform, any g.K. structure with J+ + J−
invertible is of this kind.

Example (cf. Hitchin ’06)

Let (M, g, I, J, K ) be hyperkähler and ε := −(ωI + ωJ).
Then (M, ε, J) is tamed symplectic with associated g.K.
structure (g, b, J+, J−) = (g, ωI , J, K ).
Here, L1 = L(TMC, 2ωI − i(ωJ −ωK )), L2 = L(TMC,−i(ωJ +ωK ))
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Generalized Kähler manifolds with H− = 0. Local
description

Corollary

A g.K. manifold with H+ integrable and H− = 0 is, up to a
unique B-transform, locally a product
(M × N, LM

1 × LN
1 , LM

2 × LN
2 ) where (LM

1 , LM
2 ) comes from a

Kähler structure on M and (LN
1 , LN

2 ) is a g.K. structure on N with
J+ + J− and J+ − J− invertible.



Generalized Kähler manifolds with H− = 0.

Induced holomorphic Poisson structure (cf. Hitchin ’06)

For a g.K. (M, L1, L2) coming from a tamed symplectic
structure, let ρ± : TMC → T 1,0

± M. Then ρ±∗ (L2) is a holomorphic
Poisson structure on (M, J±).

The converse holds only if J+ − J− is invertible. In this case,
ρ±∗ (L2) are holomorphic symplectic structures.

The associated Poisson bivectors on (M, J±) are

η− = −η+ =
1
4
[J+, J−]g−1.

The symplectic foliation associated to η+ is precisely V.



Generalized Kähler manifolds with H− = 0.

Induced holomorphic Poisson structure (cf. Hitchin ’06)

For a g.K. (M, L1, L2) coming from a tamed symplectic
structure, let ρ± : TMC → T 1,0

± M. Then ρ±∗ (L2) is a holomorphic
Poisson structure on (M, J±).
The converse holds only if J+ − J− is invertible. In this case,
ρ±∗ (L2) are holomorphic symplectic structures.

The associated Poisson bivectors on (M, J±) are

η− = −η+ =
1
4
[J+, J−]g−1.

The symplectic foliation associated to η+ is precisely V.



Generalized Kähler manifolds with H− = 0.

Induced holomorphic Poisson structure (cf. Hitchin ’06)

For a g.K. (M, L1, L2) coming from a tamed symplectic
structure, let ρ± : TMC → T 1,0

± M. Then ρ±∗ (L2) is a holomorphic
Poisson structure on (M, J±).
The converse holds only if J+ − J− is invertible. In this case,
ρ±∗ (L2) are holomorphic symplectic structures.

The associated Poisson bivectors on (M, J±) are

η− = −η+ =
1
4
[J+, J−]g−1.

The symplectic foliation associated to η+ is precisely V.



Holomorphic maps between generalized Kähler
manifolds with H− = 0.

Induced holomorphic Poisson morphism

Let (M, LM
1 , LM

2 ) and (N, LN
1 , LN

2 ) be generalized Kähler
manifolds, with JM

+ + JM
− and JN

+ + JN
− invertible, and let

ϕ : M → N be a map.

If
ϕ : (M, LM

2 ) → (N, LN
2 ) is holomorphic and,

at least one of ϕ : (M, JM
+ ) → (N, JN

+) and
ϕ : (M, JM

− ) → (N, JN
−) is holomorphic,

then ϕ is a holomorphic Poisson morphism between the
associated holomorphic Poisson structures.
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