Holomorphic maps between generalized complex manifolds

Liviu Ornea

University of Bucharest and Institute of Mathematics "Simion Stoilow" of the Romanian Academy

based on joint work with Radu Pantilie

January 4-9, 2009, IPMU, Tokyo

V real vector space, dim V = n. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

V real vector space, dim
$$V = n$$
. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$$C \subset V^{\mathbb{C}}$$
 s.t. $C \cap \overline{C} = \{0\}$.

V real vector space, dim
$$V = n$$
. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$$C \subset V^{\mathbb{C}}$$
 s.t. $C \cap \overline{C} = \{0\}.$

Linear co-CR-structure on V

$$D \subset V^{\mathbb{C}}$$
 s.t. $D + \overline{D} = V^{\mathbb{C}}$.

V real vector space, dim
$$V = n$$
. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$$C \subset V^{\mathbb{C}}$$
 s.t. $C \cap \overline{C} = \{0\}.$

Linear co-CR-structure on V

$$D \subset V^{\mathbb{C}}$$
 s.t. $D + \overline{D} = V^{\mathbb{C}}$.

• Co-CR is the dual notion to CR:

V real vector space, dim
$$V = n$$
. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$$C \subset V^{\mathbb{C}}$$
 s.t. $C \cap \overline{C} = \{0\}.$

Linear co-CR-structure on V

$$D \subset V^{\mathbb{C}}$$
 s.t. $D + \overline{D} = V^{\mathbb{C}}$.

- Co-CR is the dual notion to CR:
- *D* is co-CR \Leftrightarrow Ann(*D*) is CR in $(V^{\mathbb{C}})^*$.

V real vector space, dim
$$V = n$$
. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$$C \subset V^{\mathbb{C}}$$
 s.t. $C \cap \overline{C} = \{0\}.$

Linear co-CR-structure on V

$$D \subset V^{\mathbb{C}}$$
 s.t. $D + \overline{D} = V^{\mathbb{C}}$.

- Co-CR is the dual notion to CR:
- *D* is co-CR \Leftrightarrow Ann(*D*) is CR in $(V^{\mathbb{C}})^*$.
- If *J* is a complex structure on *V*, then the corresponding *V*^{1,0} and *V*^{0,1} are both CR and co-CR.

V real vector space, dim V = n. $V^{\mathbb{C}} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$$C \subset V^{\mathbb{C}}$$
 s.t. $C \cap \overline{C} = \{0\}.$

Linear co-CR-structure on V

 $D \subset V^{\mathbb{C}}$ s.t. $D + \overline{D} = V^{\mathbb{C}}$.

- Co-CR is the dual notion to CR:
- *D* is co-CR \Leftrightarrow Ann(*D*) is CR in $(V^{\mathbb{C}})^*$.
- If *J* is a complex structure on *V*, then the corresponding *V*^{1,0} and *V*^{0,1} are both CR and co-CR.

Linear CR and co-CR maps

 $t: (V, C_V) \rightarrow (W, C_W)$ linear s.t. $t(C_V) \subseteq C_W$. $t: (V, D_V) \rightarrow (W, D_W)$ linear s.t. $t(D_V) \subseteq D_W$.

- $F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:
 - $V^{\mathbb{C}} = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues 0, ±i. Moreover:

 $F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

V^C = V⁰ ⊕ V^{1,0} ⊕ V^{0,1}, corresponding to the eigenvalues 0, ±i. Moreover:

•
$$C := V^{1,0}$$
 is a CR structure,

 $F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

V^C = V⁰ ⊕ V^{1,0} ⊕ V^{0,1}, corresponding to the eigenvalues 0, ±i. Moreover:

•
$$C := V^{1,0}$$
 is a CR structure,

• $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

 $F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

V^C = V⁰ ⊕ V^{1,0} ⊕ V^{0,1}, corresponding to the eigenvalues 0, ±i. Moreover:

•
$$C := V^{1,0}$$
 is a CR structure,

• $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

f-linear maps

$$t: (V, F_V) \rightarrow (W, F_W)$$
 linear s.t. $t \circ F_V = F_W \circ t$.

 $F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

V^C = V⁰ ⊕ V^{1,0} ⊕ V^{0,1}, corresponding to the eigenvalues 0, ±i. Moreover:

•
$$C := V^{1,0}$$
 is a CR structure,

• $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

f-linear maps

 $t: (V, F_V) \rightarrow (W, F_W)$ linear s.t. $t \circ F_V = F_W \circ t$. Equivalently: $t(C_V) \subseteq C_W$ and $t(D_V) \subseteq D_W$.

 $F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

V^C = V⁰ ⊕ V^{1,0} ⊕ V^{0,1}, corresponding to the eigenvalues 0, ±i. Moreover:

•
$$C := V^{1,0}$$
 is a CR structure,

• $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

f-linear maps

 $t : (V, F_V) \rightarrow (W, F_W)$ linear s.t. $t \circ F_V = F_W \circ t$. Equivalently: $t(C_V) \subseteq C_W$ and $t(D_V) \subseteq D_W$. *t* is *f*-linear \Leftrightarrow it is both CR and co-CR map.

Linear generalized complex structures

 $\mathit{L} = \mathit{L}(\mathit{E}, \varepsilon) \subset \mathit{V}^{\mathbb{C}} \oplus (\mathit{V}^{\mathbb{C}})^*$ which is

Linear generalized complex structures

$$L = L(\mathcal{E}, arepsilon) \subset V^{\mathbb{C}} \oplus (V^{\mathbb{C}})^*$$
 which is

maximally isotropic

Linear generalized complex structures

- $\mathit{L} = \mathit{L}(\mathit{E}, \varepsilon) \subset \mathit{V}^{\mathbb{C}} \oplus (\mathit{V}^{\mathbb{C}})^*$ which is
 - maximally isotropic
 - of 0 real index: $L \cap \overline{L} = \{0\}$.

Linear generalized complex structures

- $\mathit{L} = \mathit{L}(\mathit{E}, \varepsilon) \subset \mathit{V}^{\mathbb{C}} \oplus (\mathit{V}^{\mathbb{C}})^*$ which is
 - maximally isotropic
 - of 0 real index: $L \cap \overline{L} = \{0\}$.

Induced structures

• As
$$E + \overline{E} = V^{\mathbb{C}}$$
, *E* is a co-CR structure.

Linear generalized complex structures

- $\mathit{L} = \mathit{L}(\mathit{E}, \varepsilon) \subset \mathit{V}^{\mathbb{C}} \oplus (\mathit{V}^{\mathbb{C}})^*$ which is
 - maximally isotropic
 - of 0 real index: $L \cap \overline{L} = \{0\}$.

Induced structures

- As $E + \overline{E} = V^{\mathbb{C}}$, *E* is a co-CR structure.
- $E \cap \overline{E} = \Delta^{\mathbb{C}}$ and $\operatorname{Im}(\varepsilon|_{E \cap \overline{E}})$ is non-degenerate.

Linear generalized complex structures

- $\mathit{L} = \mathit{L}(\mathit{E}, arepsilon) \subset \mathit{V}^{\mathbb{C}} \oplus (\mathit{V}^{\mathbb{C}})^*$ which is
 - maximally isotropic
 - of 0 real index: $L \cap \overline{L} = \{0\}$.

Induced structures

- As $E + \overline{E} = V^{\mathbb{C}}$, *E* is a co-CR structure.
- $E \cap \overline{E} = \Delta^{\mathbb{C}}$ and $\operatorname{Im}(\varepsilon|_{E \cap \overline{E}})$ is non-degenerate.

Call $L(E \cap \overline{E}, \text{Im}(\varepsilon|_{E \cap \overline{E}}))$ the associated linear Poisson structure.

If there exist *F* and $\omega \in \Lambda^2 V^*$ s.t.

• $\omega|_{V^0}$ is non-degenerate.

If there exist F and $\omega \in \Lambda^2 V^*$ s.t.

• $\omega|_{V^0}$ is non-degenerate.

• Ker
$$\omega = V^{1,0} \oplus V^{0,1}$$
,

If there exist F and $\omega \in \Lambda^2 V^*$ s.t.

• $\omega|_{V^0}$ is non-degenerate.

• Ker
$$\omega = V^{1,0} \oplus V^{0,1}$$
,

and $L = L(V^0 \oplus V^{1,0}, i\omega)$, then L is in *normal form*.

If there exist *F* and $\omega \in \Lambda^2 V^*$ s.t.

• $\omega|_{V^0}$ is non-degenerate.

• Ker
$$\omega = V^{1,0} \oplus V^{0,1}$$
,

and $L = L(V^0 \oplus V^{1,0}, i\omega)$, then *L* is in *normal form*. The associated linear Poisson structure is then $L(V^0, \omega)$, with bivector denoted η .

If there exist *F* and $\omega \in \Lambda^2 V^*$ s.t.

- $\omega|_{V^0}$ is non-degenerate.
- Ker $\omega = V^{1,0} \oplus V^{0,1}$,

and $L = L(V^0 \oplus V^{1,0}, i\omega)$, then *L* is in *normal form*. The associated linear Poisson structure is then $L(V^0, \omega)$, with bivector denoted η .

Normal form in tensorial language

The corresponding ${\mathcal J}$ is written as ${\mathcal J}$

$$= \begin{pmatrix} \textit{F} & \eta \\ -\omega & -\textit{F}^* \end{pmatrix}.$$

Given a generalized complex structure *L* and a *f*-structure *F* s.t. $E = \pi(L)$ is the co-CR structure associated to *F*,

Given a generalized complex structure *L* and a *f*-structure *F* s.t. $E = \pi(L)$ is the co-CR structure associated to *F*,

There exists a unique $B \in \Lambda^2 V^*$ s.t. $e^B(L)$ is in normal form, with associated *f*-structure *F*.

Given a generalized complex structure *L* and a *f*-structure *F* s.t. $E = \pi(L)$ is the co-CR structure associated to *F*, There exists a unique $B \in \Lambda^2 V^*$ s.t. $e^B(L)$ is in normal form, with associated *f*-structure *F*. $B = \begin{cases} -\operatorname{Re}(\varepsilon) & \operatorname{on} V^0 \end{cases}$

$$-arepsilon \,$$
 on $\mathrm{V}^{1,0}$ and $\mathrm{V}^0\otimes\mathrm{V}^{1,0}$

Given a generalized complex structure *L* and a *f*-structure *F* s.t. $E = \pi(L)$ is the co-CR structure associated to *F*, There exists a unique $B \in \Lambda^2 V^*$ s.t. $e^B(L)$ is in normal form, with associated *f*-structure *F*. $B = \begin{cases} -\operatorname{Re}(\varepsilon) & \operatorname{on} V^0 \\ -\varepsilon & \operatorname{on} V^{1,0} & \operatorname{and} V^0 \otimes V^{1,0} \end{cases}$.

The only freedom is in the choice of *F* and, in fact, only the splitting of $V^0 \oplus V^{1,0}$ is to be chosen.

Definition

A linear $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is

- Poisson and
- co-CR

w.r.t. the associated structures.

Definition

A linear $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is

- Poisson and
- co-CR

w.r.t. the associated structures.

Definition

A linear $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is

- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under *B*-transforms.

Definition

A linear $t: (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is

- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under *B*-transforms.

Equivalences

• t is holomorphic.

Definition

A linear $t: (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is

- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under *B*-transforms.

Equivalences

- t is holomorphic.
- Up to B-transforms, L_V and L_W are in canonical form and t is Poisson f-linear.

Definition

A linear $t: (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is

- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under B-transforms.

Equivalences

- t is holomorphic.
- Up to *B*-transforms, *L_V* and *L_W* are in canonical form and *t* is Poisson *f*-linear.
- Up to *B*-transforms, $t = t_1 \oplus t_2$, with t_1 (resp. t_2) a Poisson (resp. complex) map between symplectic (resp. complex) vector spaces.

A generalized complex structure on M induces almost CR, co-CR and almost f structure.
A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For *f*-structures, integrability is defined as integrability of the associated CR and co-CR structures.

A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For *f*-structures, integrability is defined as integrability of the associated CR and co-CR structures.

 $f: M \rightarrow N$ is CR, co-CR, *f*-holomorphic if f_* is ...

A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For *f*-structures, integrability is defined as integrability of the associated CR and co-CR structures.

 $f: M \rightarrow N$ is CR, co-CR, *f*-holomorphic if f_* is ...

Definition

 $\varphi : M \to N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to *B*-transforms of *M* and *N*, $\varphi|_U$ is a Poisson, *f*-holomorphic map between generalized complex structures in normal form.

A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For *f*-structures, integrability is defined as integrability of the associated CR and co-CR structures.

 $f: M \rightarrow N$ is CR, co-CR, *f*-holomorphic if f_* is ...

Definition

 $\varphi : M \to N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to *B*-transforms of *M* and *N*, $\varphi|_U$ is a Poisson, *f*-holomorphic map between generalized complex structures in normal form.

• A holomorphic map takes regular points to regular points.

A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For *f*-structures, integrability is defined as integrability of the associated CR and co-CR structures.

 $f: M \rightarrow N$ is CR, co-CR, *f*-holomorphic if f_* is ...

Definition

 $\varphi : M \to N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to *B*-transforms of *M* and *N*, $\varphi|_U$ is a Poisson, *f*-holomorphic map between generalized complex structures in normal form.

- A holomorphic map takes regular points to regular points.
- If φ is diffeo, then holomorphicity is equivalent to $\varphi_*(L_M) = L_N$ up to *B* transforms.

A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For *f*-structures, integrability is defined as integrability of the associated CR and co-CR structures.

 $f: M \rightarrow N$ is CR, co-CR, *f*-holomorphic if f_* is ...

Definition

 $\varphi : M \to N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to *B*-transforms of *M* and *N*, $\varphi|_U$ is a Poisson, *f*-holomorphic map between generalized complex structures in normal form.

- A holomorphic map takes regular points to regular points.
- If φ is diffeo, then holomorphicity is equivalent to $\varphi_*(L_M) = L_N$ up to *B* transforms.
- Composition preserves holomorphicity.

From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions $\varphi : M \to P$ s.t. $\varphi_*(L)$ is a Poisson structure and $L = \varphi^*(\varphi_*(L))$.

From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions $\varphi : M \to P$ s.t. $\varphi_*(L)$ is a Poisson structure and $L = \varphi^*(\varphi_*(L))$.

one obtains:

From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions $\varphi : M \to P$ s.t. $\varphi_*(L)$ is a Poisson structure and $L = \varphi^*(\varphi_*(L))$.

one obtains:

Theorem

Let (M, L_M) and (N, L_N) be regular real analytic generalized complex manifolds and let $\varphi : M \to N$ be a real analytic map.

If φ is holomorphic then, locally, up to the complexification of a real analytic *B*-field tranformation, the complexification of φ descends to a complex analytic Poisson morphism between the canonical Poisson quotients.

A class of examples on Riemann manifolds

Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$.

A class of examples on Riemann manifolds

Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$. Choose a compatible *f*-structure *F*.

A class of examples on Riemann manifolds

Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$. Choose a compatible *f*-structure *F*. Quotient to T^0M (integrable) to obtain local submersions $\varphi: M \to (N, J)$. Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$. Choose a compatible *f*-structure *F*. Quotient to T^0M (integrable) to obtain local submersions $\varphi : M \to (N, J)$. On *N* consider the canonical generalized complex structure \mathcal{J}_J . It is in normal form. Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$.

Choose a compatible *f*-structure *F*.

Quotient to T^0M (integrable) to obtain local submersions $\varphi: M \to (N, J)$.

On N consider the canonical generalized complex structure \mathcal{J}_J . It is in normal form.

As φ is *f*-holomorphic between g.c. structures in normal form, φ is holomorphic.

Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$.

Choose a compatible *f*-structure *F*.

Quotient to T^0M (integrable) to obtain local submersions $\varphi: M \to (N, J)$.

On N consider the canonical generalized complex structure \mathcal{J}_J . It is in normal form.

As φ is *f*-holomorphic between g.c. structures in normal form, φ is holomorphic.

Proposition

E is co-isotropic w.r.t. $g^{\mathbb{C}} \Leftrightarrow \varphi|_{E \cap \overline{E}}$ is pseudo-horizontally conformal (p.h.c.) *i.e.* it pulls back (1,0)-forms into isotropic forms.

Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$.

Choose a compatible *f*-structure *F*.

Quotient to T^0M (integrable) to obtain local submersions $\varphi: M \to (N, J)$.

On N consider the canonical generalized complex structure \mathcal{J}_J . It is in normal form.

As φ is *f*-holomorphic between g.c. structures in normal form, φ is holomorphic.

Proposition

E is co-isotropic w.r.t. $g^{\mathbb{C}} \Leftrightarrow \varphi|_{E \cap \overline{E}}$ is pseudo-horizontally conformal (p.h.c.) *i.e.* it pulls back (1,0)-forms into isotropic forms.

The notion comes from harmonic morphisms.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} .

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0M \oplus T^{1,0}M = \varphi_*^{-1}(T^{1,0}N), T^{0,1}M = \varphi_*^{-1}(T^{0,1}N),$

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let F be the unique g-skew-symmetric f-structure on M s.t. Ker $F = \mathcal{V}, T^0M \oplus T^{1,0}M = \varphi_*^{-1}(T^{1,0}N), T^{0,1}M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0}N), T^{0,1} M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible. Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0}N), T^{0,1} M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible. Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \Leftrightarrow *J* is integrable, \mathcal{V} has minimal leaves and $A(X, Y) := [X, Y]^{v}$ is (1, 1) w.r.t. *F*.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0}N), T^{0,1} M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible. Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \Leftrightarrow *J* is integrable, \mathcal{V} has minimal leaves and $A(X, Y) := [X, Y]^{v}$ is (1, 1) w.r.t. *F*. For n = 2, *L* integrable $\Leftrightarrow \varphi$ is a harmonic morphism.

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0}N), T^{0,1} M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible. Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \Leftrightarrow *J* is integrable, \mathcal{V} has minimal leaves and $A(X, Y) := [X, Y]^{v}$ is (1, 1) w.r.t. *F*. For n = 2, *L* integrable $\Leftrightarrow \varphi$ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.:

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0}N), T^{0,1} M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible. Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \Leftrightarrow *J* is integrable, \mathcal{V} has minimal leaves and $A(X, Y) := [X, Y]^{\nu}$ is (1, 1) w.r.t. *F*. For n = 2, *L* integrable $\Leftrightarrow \varphi$ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.: the associated *f*-structure is *g*-skew, the induced Poisson structure has rank 2, $\|\omega\| = 1$,

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^{\perp}, \omega$ volume form on \mathcal{V} . Let *F* be the unique *g*-skew-symmetric *f*-structure on *M* s.t. Ker $F = \mathcal{V}, T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0}N), T^{0,1} M = \varphi_*^{-1}(T^{0,1}N), \omega|_{\mathcal{V}}$ is non-degenerate, Ker $\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible. Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \Leftrightarrow *J* is integrable, \mathcal{V} has minimal leaves and $A(X, Y) := [X, Y]^{\nu}$ is (1, 1) w.r.t. *F*. For n = 2, *L* integrable $\Leftrightarrow \varphi$ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.: the associated *f*-structure is *g*-skew, the induced Poisson structure has rank 2, $\|\omega\| = 1$, is locally of this form.

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$.

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) .

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} .

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}.$

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$.

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$. Theorem (Gualtieri)

 L_1 and L_2 Courant-integrable $\Leftrightarrow L^{\pm}$ integrable $\Leftrightarrow J_{\pm}$ integrable and parallel w.r.t. $\nabla^{\pm} := \nabla^g \pm \frac{1}{2}g^{-1}h$, h = db.

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$. Theorem (Gualtieri)

 L_1 and L_2 Courant-integrable $\Leftrightarrow L^{\pm}$ integrable $\Leftrightarrow J_{\pm}$ integrable and parallel w.r.t. $\nabla^{\pm} := \nabla^g \pm \frac{1}{2}g^{-1}h$, h = db.

Canonical *f*-structures

Let
$$E_j = \pi(L_j)$$
 $(j = 1, 2)$. Then $E_1 = V^+ + V^-$, $E_2 = V^+ + \overline{V^-}$.

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$. Theorem (Gualtieri)

 L_1 and L_2 Courant-integrable $\Leftrightarrow L^{\pm}$ integrable $\Leftrightarrow J_{\pm}$ integrable and parallel w.r.t. $\nabla^{\pm} := \nabla^g \pm \frac{1}{2}g^{-1}h$, h = db.

Canonical f-structures

Let
$$E_j = \pi(L_j)$$
 $(j = 1, 2)$. Then $E_1 = V^+ + V^-$, $E_2 = V^+ + \overline{V^-}$.
Then $E_1^{\perp} = V^+ \cap V^-$, $E_2^{\perp} = V^+ \cap \overline{V^-}$ and hence:

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$. Theorem (Gualtieri)

 L_1 and L_2 Courant-integrable $\Leftrightarrow L^{\pm}$ integrable $\Leftrightarrow J_{\pm}$ integrable and parallel w.r.t. $\nabla^{\pm} := \nabla^g \pm \frac{1}{2}g^{-1}h$, h = db.

Canonical f-structures

Let
$$E_j = \pi(L_j)$$
 $(j = 1, 2)$. Then $E_1 = V^+ + V^-$, $E_2 = V^+ + \overline{V^-}$.
Then $E_1^{\perp} = V^+ \cap V^-$, $E_2^{\perp} = V^+ \cap \overline{V^-}$ and hence:
 E_1 , E_2 are coisotropic w.r.t. $g^{\mathbb{C}}$.
Generalized Kähler manifolds

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$. Theorem (Gualtieri)

 L_1 and L_2 Courant-integrable $\Leftrightarrow L^{\pm}$ integrable $\Leftrightarrow J_{\pm}$ integrable and parallel w.r.t. $\nabla^{\pm} := \nabla^g \pm \frac{1}{2}g^{-1}h$, h = db.

Canonical f-structures

Let $E_j = \pi(L_j)$ (j = 1, 2). Then $E_1 = V^+ + V^-$, $E_2 = V^+ + \overline{V^-}$. Then $E_1^{\perp} = V^+ \cap V^-$, $E_2^{\perp} = V^+ \cap \overline{V^-}$ and hence: E_1 , E_2 are coisotropic w.r.t. $g^{\mathbb{C}}$. The skew-symmetric F_j determined by E_j and E_j^{\perp} are integrable

f-structures.

Generalized Kähler manifolds

 (M, L_1, L_2) s.t. $\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1$ and $\mathcal{J}_1 \mathcal{J}_2 < 0$. By projection on *TM* this gives (g, b, J_+, J_-) . Let V^{\pm} be the i-eigenbundle of J_{\pm} . Let $L^{\pm} = \{X + (b \pm g)(X) \mid X \in V^{\pm}\}$. Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus \overline{L^-}$. Theorem (Gualtieri)

 L_1 and L_2 Courant-integrable $\Leftrightarrow L^{\pm}$ integrable $\Leftrightarrow J_{\pm}$ integrable and parallel w.r.t. $\nabla^{\pm} := \nabla^g \pm \frac{1}{2}g^{-1}h$, h = db.

Canonical *f*-structures

Let
$$E_j = \pi(L_j)$$
 $(j = 1, 2)$. Then $E_1 = V^+ + V^-$, $E_2 = V^+ + \overline{V^-}$.
Then $E_1^{\perp} = V^+ \cap V^-$, $E_2^{\perp} = V^+ \cap \overline{V^-}$ and hence:

 E_1 , E_2 are coisotropic w.r.t. $g^{\mathbb{C}}$.

The skew-symmetric F_j determined by E_j and E_j^{\perp} are integrable *f*-structures.

Holomorphic functions on (M, L_1) resp. (M, L_2) are bi-holomorphic functions on (M, J_+, J_-) resp. $(M, J_+, -J_-)$.

Let
$$\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$$
.

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}.$ $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} .

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$. $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} . $\mathcal{H}^{\pm}, \mathcal{V}$ distributions $\Leftrightarrow L_{1}, L_{2}$ regular.

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$. $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} . $\mathcal{H}^{\pm}, \mathcal{V}$ distributions $\Leftrightarrow L_{1}, L_{2}$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\Leftrightarrow \mathcal{H}^+$ geodesic $\Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_+) \Leftrightarrow \mathcal{H}^+$ holomorphic on (M, J_-)

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$. $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} . $\mathcal{H}^{\pm}, \mathcal{V}$ distributions $\Leftrightarrow L_{1}, L_{2}$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\Leftrightarrow \mathcal{H}^+$ geodesic $\Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_+) \Leftrightarrow \mathcal{H}^+$ holomorphic on (M, J_-) In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_{\pm}) and (g, J_{\pm}) is Kähler on its leaves.

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$. $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} . $\mathcal{H}^{\pm}, \mathcal{V}$ distributions $\Leftrightarrow L_{1}, L_{2}$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\Leftrightarrow \mathcal{H}^+$ geodesic $\Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_+) \Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_-.)$ In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_{\pm}) and (g, J_{\pm}) is Kähler on its leaves. Note that \mathcal{H}^+ geodesic $\Leftrightarrow (\mathcal{H}^+)^{\perp} = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$. $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} . $\mathcal{H}^{\pm}, \mathcal{V}$ distributions $\Leftrightarrow L_{1}, L_{2}$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\Leftrightarrow \mathcal{H}^+$ geodesic $\Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_+) \Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_-.)$ In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_{\pm}) and (g, J_{\pm}) is Kähler on its leaves. Note that \mathcal{H}^+ geodesic $\Leftrightarrow (\mathcal{H}^+)^{\perp} = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.

Corollary

Let (M, L_1^M, L_2^M) and (N, L_1^N, L_2^N) with \mathcal{H}_M^+ and \mathcal{H}_N^+ integrable.

Let $\mathcal{H}^{\pm} = \text{Ker}(J_{+} \mp J_{-}), \mathcal{V} = (\mathcal{H}^{+} \oplus \mathcal{H}^{-})^{\perp}$. $\mathcal{H}^{\pm}, \mathcal{V}$ invariant under $J_{\pm}; J_{+} \mp J_{-}$ invertible on \mathcal{V} . $\mathcal{H}^{\pm}, \mathcal{V}$ distributions $\Leftrightarrow L_{1}, L_{2}$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\Leftrightarrow \mathcal{H}^+$ geodesic $\Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_+) \Leftrightarrow \mathcal{H}^+$ holomorphic on $(M, J_-.)$ In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_{\pm}) and (g, J_{\pm}) is Kähler on its leaves. Note that \mathcal{H}^+ geodesic $\Leftrightarrow (\mathcal{H}^+)^{\perp} = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.

Corollary

Let (M, L_1^M, L_2^M) and (N, L_1^N, L_2^N) with \mathcal{H}_M^+ and \mathcal{H}_N^+ integrable. Then any holomorphic $\varphi : (M, L_1^M) \to (N, L_1^N)$ descends, locally, w.r.t. the above Riemannian submersions, to a holomorphic map between the Kähler quotients.

Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, (j = 1, 2). On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, (j = 1, 2). On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

• the first product is just the Kähler product structure,

Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, (j = 1, 2). On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

• the first product is just the Kähler product structure,

• the second product:
$$L_1 = L(T^{1,0}M_1 \times TM_2, i\omega_2)$$
 and $L_2 = L(T^{1,0}M_2 \times TM_1, i\omega_1)$

Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, (j = 1, 2). On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

• the first product is just the Kähler product structure,

• the second product:
$$L_1 = L(T^{1,0}M_1 \times TM_2, i\omega_2)$$
 and $L_2 = L(T^{1,0}M_2 \times TM_1, i\omega_1)$

Both L_1 and L_2 are in normal form; the corresponding almost *f*-structures are skew-adjoint (and, thus, unique with this property).

Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, (j = 1, 2). On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

• the first product is just the Kähler product structure,

• the second product:
$$L_1 = L(T^{1,0}M_1 \times TM_2, i\omega_2)$$
 and $L_2 = L(T^{1,0}M_2 \times TM_1, i\omega_1)$

Both L_1 and L_2 are in normal form; the corresponding almost *f*-structures are skew-adjoint (and, thus, unique with this property).

From the geometric properties of the distributions we get:

Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, (j = 1, 2). On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

• the first product is just the Kähler product structure,

• the second product:
$$L_1 = L(T^{1,0}M_1 \times TM_2, i\omega_2)$$
 and $L_2 = L(T^{1,0}M_2 \times TM_1, i\omega_1)$

Both L_1 and L_2 are in normal form; the corresponding almost *f*-structures are skew-adjoint (and, thus, unique with this property).

From the geometric properties of the distributions we get:

Theorem

Any generalized Kähler manifold with $\mathcal{V} = 0$ (*i.e.* $[J_+, J_-] = 0$) is, up to a unique *B*-field transformation, locally given by the second product of two Kähler manifolds. In particular, h = db = 0.

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ .

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ .

 (M, ε, J) is tamed symplectic $\Leftrightarrow (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ .

 (M, ε, J) is tamed symplectic $\Leftrightarrow (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.

Up to a unique *B*- transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ .

 (M, ε, J) is tamed symplectic $\Leftrightarrow (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.

Up to a unique *B*- transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Example (cf. Hitchin '06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := -(\omega_I + \omega_J)$.

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ .

 (M, ε, J) is tamed symplectic $\Leftrightarrow (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.

Up to a unique *B*- transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Example (cf. Hitchin '06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := -(\omega_I + \omega_J)$. Then (M, ε, J) is tamed symplectic with associated g.K. structure $(g, b, J_+, J_-) = (g, \omega_I, J, K)$.

Tamed symplectic manifolds

 (M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ .

 (M, ε, J) is tamed symplectic $\Leftrightarrow (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.

Up to a unique *B*- transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Example (cf. Hitchin '06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := -(\omega_I + \omega_J)$. Then (M, ε, J) is tamed symplectic with associated g.K. structure $(g, b, J_+, J_-) = (g, \omega_I, J, K)$. Here, $L_1 = L(TM^{\mathbb{C}}, 2\omega_I - i(\omega_J - \omega_K)), L_2 = L(TM^{\mathbb{C}}, -i(\omega_J + \omega_K))$

Generalized Kähler manifolds with $\mathcal{H}^- = 0$. Local description

Corollary

A g.K. manifold with \mathcal{H}^+ integrable and $\mathcal{H}^- = 0$ is, up to a unique *B*-transform, locally a product $(M \times N, L_1^M \times L_1^N, L_2^M \times L_2^N)$ where (L_1^M, L_2^M) comes from a Kähler structure on *M* and (L_1^N, L_2^N) is a g.K. structure on *N* with $J_+ + J_-$ and $J_+ - J_-$ invertible.

Induced holomorphic Poisson structure (cf. Hitchin '06)

For a g.K. (M, L_1, L_2) coming from a tamed symplectic structure, let $\rho^{\pm} : TM^{\mathbb{C}} \to T^{1,0}_{\pm}M$. Then $\rho^{\pm}_*(L_2)$ is a holomorphic Poisson structure on (M, J_{\pm}) .

Induced holomorphic Poisson structure (cf. Hitchin '06)

For a g.K. (M, L_1, L_2) coming from a tamed symplectic structure, let $\rho^{\pm} : TM^{\mathbb{C}} \to T^{1,0}_{\pm}M$. Then $\rho^{\pm}_*(L_2)$ is a holomorphic Poisson structure on (M, J_{\pm}) . The converse holds only if $J_+ - J_-$ is invertible. In this case,

 $\rho_*^{\pm}(L_2)$ are holomorphic symplectic structures.

Induced holomorphic Poisson structure (cf. Hitchin '06)

For a g.K. (M, L_1, L_2) coming from a tamed symplectic structure, let $\rho^{\pm} : TM^{\mathbb{C}} \to T_{\pm}^{1,0}M$. Then $\rho_*^{\pm}(L_2)$ is a holomorphic Poisson structure on (M, J_{\pm}) . The converse holds only if $J_+ - J_-$ is invertible. In this case, $\rho_*^{\pm}(L_2)$ are holomorphic symplectic structures.

The associated Poisson bivectors on (M, J_{\pm}) are

$$\eta_{-} = -\eta_{+} = \frac{1}{4}[J_{+}, J_{-}]g^{-1}.$$

The symplectic foliation associated to η_+ is precisely \mathcal{V} .

Holomorphic maps between generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Induced holomorphic Poisson morphism

Let (M, L_1^M, L_2^M) and (N, L_1^N, L_2^N) be generalized Kähler manifolds, with $J_+^M + J_-^M$ and $J_+^N + J_-^N$ invertible, and let $\varphi: M \to N$ be a map.

Holomorphic maps between generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Induced holomorphic Poisson morphism

Let (M, L_1^M, L_2^M) and (N, L_1^N, L_2^N) be generalized Kähler manifolds, with $J_+^M + J_-^M$ and $J_+^N + J_-^N$ invertible, and let $\varphi : M \to N$ be a map.

lf

- $\varphi: (M, L_2^M) \rightarrow (N, L_2^N)$ is holomorphic and,
- at least one of $\varphi : (M, J^M_+) \to (N, J^N_+)$ and $\varphi : (M, J^M_-) \to (N, J^N_-)$ is holomorphic,

then φ is a holomorphic Poisson morphism between the associated holomorphic Poisson structures.