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ALGEBRA OF SPLIT QUATERNIONS

Denote by H′ = {a + bi + cs + dt ∈ R4|i2 =

−1, s2 = t2 = 1, is = −si = t} the algebra

of the split quaternions. They are associated

with a natural scalar product of split signature

(2,2). For p, q ∈ H′, the product is defined by

|p|2 =< p, p >= a2+b2−c2−d2. Then one has:

pq + qp = −2 < p, q >

which is the definition of the Clifford alge-

bra C(1,1) determined by this scalar product.

Other algebraic relations: pq = q p and |pq|2 =

|p|2|q|2.

NEUTRAL HYPERCOMPLEX STRUCTURES

Based on the algebra H′ one defines a neutral

hypercomplex structure (also called complex

product and hyper-paracomplex structure) on

M4n as a triple of endomorphisms I, S, T of TM
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with I2 = −Id, S2 = T2 = Id, IS = T = −SI

satisfying the integrability condition NI = NS =

NT = 0, where NA(X, Y ) = A2[AX, AY ]+[X, Y ]−
A[AX, Y ]−A[X, AY ] is the Nijenhuis tensor as-

sociated with A = I, S, T .

Moreover there exists a unique torsion-free con-

nection (called the Obata connection) ∇ such

that ∇I = ∇S = ∇T = 0. The structure

is the ”split analog” of hypercomplex struc-

ture. For a given neutral hypercomplex struc-

ture (I, S, T ) one can consider the set K(a,b,c) =

aI + bS + cT . Then K2
(a,b,c) = (−a2+ b2+ c2)Id

and ∇K(a,b,c) = 0. So in particular:

i) If a2−b2−c2 = 1, K(a,b,c) is a complex struc-

ture,

ii) If a2 − b2 − c2 = −1, K(a,b,c) is a product

structure (called also paracomplex),
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iii) If a2−b2−c2 = 0, Ker(K(a,b,c)) = Im(K(a,b,c))

is involutive middle-dimensional distribution on

M .

A pseudo-Riemannian metric g, such that I, S, T

are skew-symmetric is called neutral hyperher-

mitian (or hyper-parahermitian). Such metric

has split signature.

Lemma 1 Every neutral (almost) hypercom-

plex 4-manifold M has a double or 4-fold cov-

ering which admits a neutral (almost) hyper-

hermitian metric

Example: If S is paracomplex, a neutral metric

for which g(SX, SY ) = −g(X, Y ) is called para-

hermitian. Any neutral hyperhermitian metric

is parahermitian with respect to any K(a,b,c)

from ii). However not every paracomplex man-

ifold admits parahermitian metric.



The reason is that a parahermitian metric de-

termines a global isomorphism T+ → (T−)∗,
where T = T+⊕ T− is the splitting of the tan-

gent bundle into ±1-eigenbundles of S. Then

the product T2 × S2 with S|S2 = +Id, S|T2 =

−Id is an easy example of paracomplex mani-

fold without compatible parahermitian metric.

For the next part of the talk we will concen-

trate on four-dimensional case M4. A neutral

hyperhermitian metric in this case is anti-self-

dual.

There are two additional equivalent characteri-

zations of 4-dimensional neutral hypercomplex

manifold M4:

Theorem 1 Let M be an oriented 4-dimensional

smooth manifold.

i) M admits a neutral hypercomplex structure

if and only if M admits two complex structures
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with the same orientation I1 and I2, such that
I1I2+I2I1 = 2pId for a constant p with |p| > 1.

ii) M admits a neutral hyperhermitian structure
iff M admits three 2-forms Ω1,Ω2,Ω3 such
that −Ω2

1 = Ω2
2 = Ω2

3 = vol, Ωi ∧Ωj = 0 for
i 6= j and a 1-form θ such that dΩi = θ ∧Ωi.

Remark: In i) above, if |p| < 1, then I1, I2
determine a usual hypercomplex structure. It
is valid in any dimension. For any neutral hy-
perhermitian metric the set KerK(a,b,c) always
determines a null-space (α-surface if the orien-
tation is determined by I).

As a corollary from the theorem we also obtain
that the conformal class of a neutral hyperher-
mitian metric is fixed by the neutral hypercom-
plex structure in dimension four.

In ii) the forms Ωi are the fundamental forms of
I, S, T for some neutral hyperhermitian metric.



NEUTRAL HYPERKÄHLER OR HYPER-

SYMPLECTIC STRUCTURES

If θ = 0 the structure is called neutral hy-

perkähler or hypersymplectic. Then there is a

neutral signature metric such that the funda-

mental forms of I, S, T are closed and its Levi-

Civita connection coincides with the Obata con-

nection. Such structures on compact complex

surfaces with complex structure I are classi-

fied by H.Kamada - they can only be 4-tori

or Kodaira surfaces. J.Petean and H.Kamada

constructed such structures on both the 4-tori

and primary Kodaira surfaces. We can notice

the following:

Theorem 2 Let (M, g) be a compact pseudo-

Riemannian 4-manifold of signature (2,2) which

admits two independent parallel null vector fields.

Then M admits a neutral hyperkähler structure
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COMPACT COMPLEX SURFACES WITH

VANISHING FIRST CHERN CLASS

The complex structure I of a neutral hyper-

complex structures has a vanishing first Chern

class. So a compact complex surface admits

such a structure only if c1(I) = 0. The classi-

fication of such surfaces is known:

Theorem 3 Let (M, I) be a compact complex

surface with complex structure I and c1(I) =

0. Then (M, I) is minimal and one of the fol-

lowing: a torus, a K3-surface, a primary Ko-

daira surface, a Hopf surface, an Inoue surface

or a properly elliptic surface with odd b1.

Theorem 4 The following compact complex

surfaces admit a neutral hypercomplex struc-

ture: the 4-tori, the primary Kodaira surfaces,

the Inoue surfaces of type S±, the properly el-

liptic surfaces with odd b1 and the quaternionic

Hopf surfaces.
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If the 1-form θ is closed, then the neutral hy-

percomplex structure is locally conformal to

neutral hyperkähler. All known examples of

neutral hypercomplex structures on the sur-

faces of the above theorem are locally confor-

mally neutral hyperkähler. In this case there

is:

Theorem 5 Let (M, I) be a compact complex

surface admitting a locally conformally neutral

hyperkäher structure (g, I, S, T ). Then M is

one of the following: a torus, a primary Ko-

daira surface, an Inoue surface of type S±N or

a Hopf surface. All such surfaces with the ex-

ception of the non-quaternionic Hopf surfaces

admit such a structure.

Remark: All non-Kähler compact complex sur-

faces with vanishing first Chern class admit

transitive actions of a 4-dimensional Lie group.
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The above mentioned neutral hypercomplex

structures could be chosen to be invariant. In-

variant structures are found by N.Blazic and

S.Vukmirovich and also A.Andrada and S.Salamon.

Examples

(1) Primary Kodaira surfaces (H.Kamada, J.Petean)

Consider the affine transformations ρi(z1, z2) =

(z1 + ai, z2 + aiz1 + bi) of C2, where ai,bi, i =

1,2,3,4, are complex numbers such that a1 =

a2 = 0, Im(a3a4) = b1. Then ρi generate a

group G of affine transformations acting freely

and properly discontinuously on C2. The quo-

tient space C2/G is called a primary Kodaira

surface. H. Kamada showed that in the com-

plex coordinates (z1, z2) of C2 any neutral hy-

perkähler structure on the primary Kodaira sur-

face is given by the following symplectic forms:
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Ω1 = Im(dz1∧dz2)+iRe(z1)dz1∧dz1+(i/2)∂∂φ,

Ω2 = Re(eiηdz1 ∧ dz2), Ω3 = Im(eiηdz1 ∧ dz2),

where η is a real constant and φ is a smooth

function on M such that:

4i(Im(dz1∧dz2)+iRe(z1)(dz1∧dz1))∧∂∂φ = ∂∂φ∧∂∂φ

If φ is a function of z1 and z1, one obtains

the solution due to J.Petean. It also provides

an infinite-dimensional family of neutral hy-

perkähler structures - a sharp contrast with

the positive case

(2) Quaternionic Hopf surfaces:

Consider M = (H′ − {0})/Z, where the action

is generated by La : q → aq, where a ∈ C
9



is a complex number with |a| > 1. If q =

z1+z2s, then the action is (z1, z2) → (az1, az2).

Then the following forms define conformally

neutral hyperkähler structure on H′−{0} which

descends to a locally conformal neutral hy-

perkähler structure on M :

Ω1 = i
dz1 ∧ dz1 − dz2 ∧ dz2

|z1|2 + |z2|2

Ω2 + iΩ3 =
dz1 ∧ dz2
|z1|2 + |z2|2

If a is real one can take Ω1 = Redz1∧dz2+i∂∂φ
|z1|2+|z2|2

for a function φ depending on (z1, z1).

(3) Inoue surfaces of type S±

These surfaces are factors of C×H, where H is

the upper half-plane. We use the fact that they

appear as quotients of a solvable Lie group G



by a discrete subgroups and the complex struc-

ture is invariant. There is a transitive action

of G on C×H given by:



ε b c
0 α a
0 0 1







z
w
1




where (z, w) ∈ C × H and α > 0, a, b, c are real

numbers, ε = ±1.

The Lie algebra G and the complex structure

are defined as follows:

[X2, X3] = −X1, [X4, X2] = X2, [X4, X3] = −X3

IX1 = X2, IX2 = −X1, IX3 = X4 − qX2

IX4 = −X3 − qX1

Suppose that αi is the dual basis of Xi of left

invariant 1-forms. Then

dα1 = α2∧α3, dα2 = α2∧α4, dα3 = −α3∧α4, dα4 = 0



and

Ω2 + iΩ3 = (α1 + iα2 + iqα4) ∧ (α3 + iα4)

We see that θ = α4 and Ω1 = α1 ∧ α3 + α2 ∧
α4 provides an invariant neutral hypercomplex

structure. Using the description of the forms

αi in terms of complex coordinates on C ×H,

we can deform Ω1 to Ω1 + i∂∂φ
Im(w) for arbitrary

function φ depending on Im(w) (the imaginary

part of the H coordinate).

(4) Properly elliptic surfaces.

These are complex surfaces with universal cover
˜SL2(R) × R1 and are dual in a sense to Hopf

surfaces. The Lie algebra sl2(R)⊕R1 and the

hypercomplex structure is defined as follows:

[X2, X3] = X1, [X1, X2] = X3, [X1, X3] = X2

IX1 = X3, IX2 = X4, SX1 = X2, SX3 = −X4



GENERALIZED PSEUDO KÄHLER STRUC-

TURES AND NEUTRAL BIHERMITIAN

SURFACES

From Theorem 1, i), one can see that it is nat-

ural to consider a 4-manifold with two complex

structures I1, I2 for which I1I2 + I2I1 = 2pId

for a function p with |p| > 1. In this case the

structures are compatible with a neutral met-

ric, while for |p| < 1 they are compatible with

a positive-definite one. We can relate such

structure with the generalized complex struc-

tures.

Definition 1 A (twisted) generalized pseudo-

Kähler structure is a pair of commuting (twisted)

generalized complex structures J1, J2T ⊕ T ∗ →
T⊕T ∗, such that G = −J1J2 has ±1-eigenspaces

L± transversal to TM and the canonical inner

product on T ⊕ T ∗ is nondegenerate on L±.



Using the same proof as in M.Gualtieri’s thesis,

we have

Theorem 6 A generalized pseudo-Kähler struc-

ture on a manifold M is equivalent to a quadru-

ple (I1, I2, g, b) where g is a pseudo-metric and

I1, I2 are g-hermitian and d1ω1 = −d2ω2 = db,

where ωi is the Kähler form of Ii.

The triple (I1, I2, g) is called a neutral biher-

mitian structure, a strong neutral bihermitian

structure if I1 6= ±I2 at any point, and a pos-

itive neutral bihermitian structure if both I1
and I2 have positive orientation. In dimension

four a pair of commuting generalized complex

structures gives rise to a strong positive bi-

hermitian structure when they are determined

by spinors φ1 = e−B+iω1 and φ2 = eB+ω2 with

closed 2-forms B, ω1, ω2 satisfying:

Bω1 = Bω2 = ω1ω2 = ω2
1 + ω2

2 − 4B2 = 0



ω2
1 = λω2

2, λ 6= 0

Here λ > 0 determines a regular bihermitian

structure and λ < 0 determines a neutral bi-

hermitian structure.

Example: One can deform a neutral hyperkähler

structure to obtain a generalized pseudo-Kähler

structure similarly to the positive-definite case.

Fix two complex structures in the neutral hy-

percomplex family I1 and I2. Their commuta-

tor K, after normalization is a product struc-

ture and defines a closed 2-form ωK which is a

common real part of two (2,0)-forms with re-

spect to I1 and I2 say ωK + iω′ and ωK + iω”.

Then B = ωK, ω1 = ω′ + ω”, ω2 = ω′ − ω”

will provide a generalized pseudo-Kähler struc-

ture with db = 0. However if we use a one-

parameter group of ωK-Hamiltonian transfor-

mations Ht, we can consider B = ωK, ω1 =

ω′ + H∗
t ω”, ω2 = ω′ − H∗

t ω”. Then this is a

generalized pseudo-Kähler structure with db 6=



0 in general. Notice that (I1)t = I1 is un-

changed and (I2)t = H∗−t(I2)H
∗
t . The case

of primary Kodaira surface is worth noticing,

since it doesn’t admit any positive generalized

Kähler structure.

NEUTRAL HYPERCOMPLEX REDUCTION

AND INSTANTON MODULI SPACES

The reduction of neutral hypercomplex struc-

tures is similar to the hypercomplex reduction

as developed by D. Joyce and is based on the

reduction of hypersymplectic structures con-

sidered by N.Hitchin. Let G be a compact

group of hypercomplex automorphisms of (M, I, S, T )

with Lie algebra g and denote the algebra of

the induced hyper-holomorphic vector fields with

the same g. Suppose that ν = (ν1, ν2, ν3) :

M −→ R3 ⊗ g∗ is a G-equivariant map satisfy-

ing the following:



i) The Cauchy-Riemann condition Idν1 = −Sdν2 =

−Tdν3, and

ii) The transversality condition Idν1(X) 6= 0

for all X ∈ g.

Any map satisfying these conditions is called a

G-moment map. Given a point ζ = (ζ1, ζ2, ζ3)

in R3 ⊗ g, denote the level set ν−1(ζ) by P. If

ζi are in the center of g then the level set P is

invariant. Then we have:

Theorem 7 Let ν be a G-moment map for

a group G which acts properly and freely on

P = ν−1(0). Suppose that on ν−1(0) there

is no non-zero solution to the equation IX +

SY +TZ = 0 for X, Y, Z ∈ g. Then the quotient

manifold N = P/G is smooth and inherits a

neutral hypercomplex structure.

We first notice that in the moment map def-

inition one can use any 3 complex structures



I1, I2, I3 of the family K(a,b,c) instead of I, S, T .

Then the Cauchy-Riemann condition is I1dν1 =

I2dν2 = I3dν3. Here the anti-commutators of

I1, I2, I3 satisfy Theorem 1 i). Then the re-

duction theorem is still valid.

Now consider a compact complex surface with

neutral hypercomplex structure and a neutral

hyperhermitian metric. Then we fix complex

structures I1, I2, I3 and their Kähler forms ω1, ω2, ω3,

which define a basis for the self-dual forms Λ+

at each point. Now a 2-form F is ASD if and

only if F ∧ ωi = 0 for i = 1,2,3. In particular a

connection A on a SU(k)-bundle is an instan-

ton if its curvature FA satisfies this condition.

Then we have:

Corollary 1 The ”smooth part” of the mod-

uli space of SU(k)-instantons on a compact

neutral hypercomplex four manifold admits a

neutral hypercomplex structure.



Here the group G is the gauge group of the

bundle. The moment maps are given by νi(A) =

FA∧ωi. If a ∈ Ω1(M, su(k)) is any tangent vec-

tor at A generated by Lie(G), then d(νi)A(a) =

dAa ∧ ωi. In this case the main identity is

ωi ∧ dc
Aa = dA ∗ a − dcω ∧ a for any complex

structure where dc
A = I−1dAI. The Cauchy-

Riemann condition follows from the identity

d1ω1 = d2ω2 = d3ω3 = ∗θ satisfied for any neu-

tral hyperhermitian structure. Then the subset

in the smooth part of the moduli space where

this structure is degenerate is given by [A] such

that d1
Aa+d2

Ab+d3
Ac = 0 has a nonzero solution

(a, b, c) for some A ∈ [A].


