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The Plan.

1. Algebraic sets.

2. Ideals; existence of maximal ideals.

3. Hilbert’s Nullstellensatz.

4. Continuum-dimensional spaces and the proof of Nullstellensatz.

Preliminaries: I assume knowledge of groups, rings, fields, vector spaces,

basic set theory (surjective, injective, bijective maps, cardinals, equivalence

classes), topological spaces, and Hausdorff spaces. It is possible that at

a later point we shall need implicit map theorem. For today’s lecture (and

only) we use advanced set theory, such as Zorn lemma.
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Algebraic sets in Cn

REMARK: In most situations, you can replace your ground field C by any
other field. However, there are cases when chosing C as a ground field sim-
plifies the situation. Moreover, using C is essentially the only way to
apply topological arguments which help us to develop the geometric
intuition.

DEFINITION: A subset Z ⊂ Cn is called an algebraic set if it can be goven
as a set of solutions of a system of polynomial equations P1(z1, ..., zn) =
P2(z1, ..., zn) = ... = Pk(z1, ..., zn) = 0, where Pi(z1, ..., zn) ∈ C[z1, ..., zn] are
polynomials.

EXERCISE: Prove that finite unions and finite intersections of algebraic
sets are again algebraic sets.

DEFINITION: Let A ⊂ Cm, A′ ⊂ Cn be algebraic sets. An polynomial map
ϕ : A−→A′ is a map from A to A′ which is given in coordinates by a set of
polynomial functions ϕ1, ..., ϕn : Cm −→ C.

Algebraic geometry is (roughly speaking) the study of algebraic sets
and polynomial maps between algebraic sets.
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Affine varieties

DEFINITION: Algebraic function on an algebraic set Z ⊂ Cn is a restriction

of a polynomial function to Z. An algebraic set with a ring of algebraic

functions on it is called an affine variety.

DEFINITION: Two affine varieties A,A′ are isomorphic if there exists a

bijective polynomial map A−→A′ such that its inverse is also polynomial.

REMARK: The cornerstone observation of algebraic geometry (essentially

due to Hilbert and Emmy Noether): an affine variety is determined, up to

an isomorphism, by its ring of polynomial functions.

To explain this, I would need to introduce some notions of commutative

algebra.
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Maximal ideals

REMARK: All rings are assumed to be commutative and with unity.

DEFINITION: An ideal I in a ring R is a subset I ( R closed under addition,

and such that for all a ∈ I, f ∈ R, the product fa sits in I.

REMARK: The quotient group R/I is equipped with a structure of a ring,

called the quotient ring.

DEFINITION: A maximal ideal is an ideal I ⊂ R such that for any other

ideal I ′ ⊃ I, one has I = I ′.

EXERCISE: Let a ∈ R be an element of a ring which is not invertible. Prove

that a is contained in an ideal I ⊂ R.

Using this exercise, one obtains the following statement.

EXERCISE: Prove that an ideal I ⊂ R is maximal if and only if R/I is a

field.
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Existence of maximal ideals

THEOREM: Let I ⊂ R be an ideal in a ring. Then I is contained in a

maximal ideal.

Proof: One applies the Zorn lemma to the set of all ideals, partially ordered

by inclusion.

CLAIM: Let A be an affine variety, OA the ring of polynomial functions on

A, a ∈ A a point, and Ia ⊂ OA an ideal of all functions vanishing in a. Then

Ia is a maximal ideal.

Proof: For any f ∈ OA, the function f − f(a) belongs to Ia, hence the

quotient OA/I is isomorphic to C.

DEFINITION: The ideal Ia is called the (maximal) ideal of the point

a ∈ A.

6



Algebraic geometry I, lecture 1 M. Verbitsky

Basis for an infinite-dimensional space

THEOREM: (Hilbert’s Nullstellensatz)
Let A be an affine variety, and OA the ring of polynomial functions on A.
Then every maximal ideal in A is an ideal of a point a ∈ A: I = Ia.

The proof (which works only over C) is based on the following concept.

DEFINITION: Let V be a vector space (possibly, infinite-dimensional). Ba-
sis (in the sence of Hamel) of V is a set of vectors S in V such that any finite
subset S0 ⊂ S is linearly independent, and any vector in V is expressed as a
linear combination of some vectors in S.

EXERCISE: Using Zorn lemma, prove that any vector space admits a
basis.

EXERCISE: Let S, S′ be two basises (bases) in V . Then S and S′ have
the same cardinality; in particular, one of them is countable when another
is countable.

DEFINITION: Dimension of an infinite-dimensional space V is cardinality
of its basis.
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Hilbert’s Nullstellensatz

THEOREM: (Hilbert’s Nullstellensatz)

Let A ⊂ Cn be an affine variety, and OA the ring of polynomial functions on

A. Then every maximal ideal in A is an ideal of a point a ∈ A: I = Ia.

Proof. Step 1: For an ideal I ⊂ OA, consider the set of common zeros of

I:

V (I) := {a ∈ A | ∀f ∈ I, f(a) = 0}.

If V (I) contains a ∈ A, one has I ⊂ Ia. This means that for any maximal ideal

I ⊂ OA, the set V (I) is empty, or contains precisely one point; in the second

case, one has I = Ia. Therefore, to prove the Nullstellensatz, one needs

only to show that V (I) is non-empty.

Idea of a proof: The quotient k := OA/I is countably-dimensional, but there

are no countably-dimensional fields over C except C itself. In the later

case, existence of common zeros is essentially a tautology.
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Digression: dimension of the field of rational functions.

Lemma 1: Let C(t) be the field of rational functions (fraction field of the

rings of polynomials). Then C(t) is continuum-dimensional over C.

Proof: For any set a1, ..., ak ∈ C of pairwise distinct points, the ratio-

nal functions
{

1
t−ai

}
∈ C(t) are linearly independent over C. Indeed, if∑k

i=1
λi
t−ai = 0, one has

∑k
i=1 λi(t− a1)(t− a2) . . . ̂(t− ai) . . . (t− an)

(
∏k
i=1(t− ai))

= 0.

(we denote by ̂(t− ai) a multiplier which is omitted), and this gives

P (t) :=
k∑
i=1

λi(t− a1)(t− a2) . . . ̂(t− ai) . . . (t− an) = 0.

However, P (a1) = λ1(a1 − a2)(a1 − a3) . . . (a1 − an) 6= 0, hence P (t) 6= 0.

This implies that C(t) contains a continuous, linearly independent family of

rational functions, and its dimension is at least continuum. It is at most

continuum, because cardinality of C(t) is continuum (prove it).
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Hilbert’s Nullstellensatz (2)

THEOREM: (Hilbert’s Nullstellensatz)

Let A ⊂ Cn be an affine variety, and OA the ring of polynomial functions on

A. Then every maximal ideal in A is an ideal of a point a ∈ A: I = Ia.

(Step 1:) Need only to show that the set of common zeros of I is

non-empty.

Step 2: The quotient k := OA/I is a field, because I is maximal. Also, it

contains C (the field of constant functions). Since C is algebraically closed,

any element t ∈ k\C is transcendental over C. This means that C = k or

k ⊂ C(t), where C(t) denotes the field of rational functions.

Step 3: Since OA is generated by coordinate monomials, OA is countably-

dimensional over C. Clearly, the same is true for k = OA/I.

Step 4: By Lemma 1, k cannot contain the field of rational functions. There-

fore, k = C.
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Hilbert’s Nullstellensatz (2)

THEOREM: (Hilbert’s Nullstellensatz)

Let A ⊂ Cn be an affine variety, and OA the ring of polynomial functions on

A. Then every maximal ideal in A is an ideal of a point a ∈ A: I = Ia.

(Step 1:) Need only to show that the set of common zeros of I is

non-empty.

(Step 2-4:) We have shown that k = OA/I = C.

Step 5: It remains to produce a point a = (a1, ..., an) ∈ A such that a ∈ V (I).

Consider the homomorphism ϕ : OA −→OA/I = C constructed above, and

let a1 = ϕ(z1), ..., an = ϕ(zn), where zi are coordinate functions. For any

polynomial P (z1, ..., zn) ∈ I, one has

0 = ϕ(P ) = P (ϕ(z1), ϕ(z2), ..., ϕ(zn)) = P (a).

Therefore, all functions P ∈ I satisfy P (a) = 0.
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