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REMINDER: Affine varieties and finitely generated rings

DEFINITION: Category of affine varieties over C: its objects are algebraic
subsets in C", morphisms — polynomial maps.

DEFINITION: Finitely generated ring over C is a quotient of Cl[¢1, ..., tn]
by an ideal.

DEFINITION: Let R be a ring. An element x € R is called nilpotent if
™ = 0 for some n € Z>0.

Theorem 1: Let Ci be a category of finitely generated rings over C without
non-zero nilpotents and Aff — category of affine varieties. Consider the func-
tor ® : Aff — C¥ mapping an algebraic variety X to the ring of polynomial
functions on X. Then & is an equivalence of categories.

Proof: Later in this lecture.
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Strong Nullstellensatz

DEFINITION: Let I C Cl[ty,...,tn] be an ideal. Denote the set of common
zeros for I by V(I), with

V() ={(z1,....,2n) €C" | f(z1,...,2n) =0Vf € I}.

For Z C C"™ an algebraic subset, denote by Ann(A) the set of all polynomials
P(tq,...,tn) vanishing in Z.

THEOREM: (strong Nullstellensatz). For any ideal I C Cltq,...,tn] such
that C[tq, ..., tn]/I has no nilpotents, one has Ann(V(I)) = I.

Proof: Later in this lecture.

REMARK: “Weak Nullstellensatz” claims that V(I) is never empty for any
non-trivial ideal I; “Strong Nullstellensatz” claims that I is uniquely deter-
mined by V(I) when R/I has no nilpotents.
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Strong Nullstellensatz and equivalence of categories

THEOREM: (strong Nullstellensatz). For any ideal I C CJtq,...,tn] such
that CJtq,...,tn]/I has no nilpotents, one has Ann(V (1)) = 1I.

Now we deduce Theorem 1 from Strong Nullstellensatz. This would
require us to construct a functor W : Cp — Aff. Since any object R €
©6(Cpr) is given as R = C[tq,...,tn]/I, we define W as W(R) := V(I),; the
functor ® : Aff — Cp was defined as Z — Ann(Z).

Strong Nullstellensatz gives Ann(V(I)) = I, hence (VW (R)) = R for any
finitely generated ring. It remains to prove V(Ann(Z)) = Z.

Clearly, V(Ann(Z)) D Z: any point z € Z belongs to the set of common zeros
of Ann(Z). On the other hand, Z is a set of common zeros of a system & of
polynomial equations, giving Z = V(%) D V(Ann(Z%)).
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Localization

DEFINITION: Localization R(F)) of a ring R with respect to FF € R is a
ring R[F~1], which is formally generated by the elements of form a/F™ and

relations a/F™ - b/F™ = ab/F"t™ q/F" 4+ b/F™ = GF;:,L‘_"FS%F” and aFF/Fktn =
a/F™.

REMARK: Clearly, R(F) = R[t]/(tF — 1).

EXAMPLE: Z[271], the ring of rational numbers with denominators 2*.
EXAMPLE: C[t, ¢t~ 1], the ring of Laurent polynomials.

EXERCISE: Let R be a finitely generated ring over a field k. Prove that
R[F~1] is a finitely generated ring over k.

CLAIM 1: Suppose that R[F~1] =0, where F € R. Then F is nilpotent.

Proof. Step 1: R(F) = R[t]/(tF —1). Therefore, 1 = 0 implies 1 =
(Ft—1)P, for some P c R[t].

Step 2: Let P(t) = Y a;t', where ¢; € R. Then 1 = (Ft — 1)P implies
a; =a;_1F for all : > 0, and ag = 1.

Step 3: This gives P=Y F't', and F*"t1 =0. =
5
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Spectrum and localization
DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

EXERCISE: Let R -2+ Ry be a ring homomorphism. Prove that ¢ 1(p)
IS a prime ideal, for any p € Spec R;.

PROPOSITION: In other words, any morphism R — R4 gives an injective
map of spectra Spec R[f~1] — SpecR.

Proof: Suppose that prody € Spec R(f), and p = q are their images in Spec R.
Then for each p € pr, we have pr cqCqy, since g is prime, this implies that
peEq N

DEFINITION: Nilradical of a ring R is the set Nil(R) of all nilpotent ele-
ments of R.

THEOREM: Interesection P of all prime ideals of R is equal to Nil(R).

Proof: Clearly, P D Nil(R). Assume that, conversely, x ¢ Nil(R). Then
R[z~1] # 0, hence R[z~!] contains a prime ideal (the maximal one), and
its image in Spec R does not contaim . m
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Rabinowitz trick

DEFINITION: Let I C CJ[tq,...,tn] be an ideal. Recall that the set of com-
mon zeros of I is denoted by V(I) (“vanishing set”, ‘“null-set”, *“zero
set” ), and the set of all polynomials vanishing in Z C C" is denoted Ann(Z2)
( “annihilator”).

Theorem 1: Let I C Clty,...,tn] be an ideal, and f a polynomial function,
vanishing on V(I). Then f& I for some N € 7Z>9.

Proof. Step 1: Consider an ideal I; C Clty,...,t,41] generated by I C
Clt1,...,tn] and ft,41—1. Since the submodule of R generated by (ft,4;—
1,7) has no common zeros, [; contains 1 by (weak) Nullstellensatz.

Step 2: Let R:=CJty,...,tp]/I. Consider the map ¢ : Cl[ty,...,t,4+1] — R[f1]
which is identity on ty,...,t, and mapping t,41 to f~—1. Since ¢(I7) = 0, and
1 € I, one has 1 = 0 in R[f~1], giving R[f"1] = 0. By Claim 1, f is
nilpotent in R. =

COROLLARY: (Strong Nullstellensatz)
Suppose that R := Cltq,...,tn]/I is a ring without nilpotents. Then [ =
Ann(Vy)).

Proof: If a € Ann(V;)), then a™ € I by Theorem 1. =
v’
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Smooth points

DEFINITION: Let A C C"™ is an algebraic subset. A point a € A is called
smooth, if there exists a neighbourhood U of a € C" (in usual topology) such
that ANU is a smooth 2k-dimensional real submanifold. A point is called
singular if such diffeomorphism does not exist. A variety is called smooth if
it has no singularities, and singular otherwise.

PROPOSITION: For any algebraic variety A and any smooth point a € A,
a diffeomorphism between a neighbourhood of a and an open ball can be
chosen polynomial.

Proof. Step 1: Inverse function theorem. Let a € M be a point on a
smooth k-dimensional manifold and fq,..., fr. functions on M such that their
differentials dfy,...,df;. are linearly independent in a. Then fq,..., fi define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: If a € A C C" is a smooth point of a k-dimensional embedded
manifold, there exists £k complex linear functions on C" which are linearly
independent on 7 A.

Step 3: These function define diffeomorphism from a neighbourhood of
A to an open subset of Ck. m

3
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Maximal ideal of a smooth point
REMARK: The set of smooth points of A is open.

CLAIM: Let m, be a maximal ideal of a smooth point of a k-dimensional
manifold M. Then dimgm,;/m2 = k.

Proof: Consider a map dgz : my — T, M mapping a function f to df|,. Clearly,
dg IS surjective, and satisfies kerd; = m% (prove it!) =

CLAIM: A manifold A ¢ C2 given by equation zy = 0 is not smooth in
a:= (0,0).

Proof. Step 1: ma/mg is the quotient of the space of all polynomials,
vanishing in a, that is, degree > 1, by all polynomials of degree > 2, hence it
IS 2-dimensional.

Step 2: Therefore, if a is smooth point of A, A is 2-dimensional in a
neighbourhood of (0,0). However, outside if a, A is a line, hence 1-
dimensional: contradiction. =
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Hard to prove, but intiutively obvious observations

EXERCISE: Prove that the set of smooth points of an affine variety is
constructible, that is, obtained as a complement of an algebraic set to an
algebraic set.

Really hard exercise: Prove that any affine variety over C contains a
smooth point.

EXERCISE: Using these two exercises, prove that the set of smooth
points of A is dense in A.

10
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Irreducible varietiees

DEFINITION: A affine manifold A is called reducible if it can be expressed
as a union A = A1 U A, of affine varieties, such that A1 € Ao and A, ¢ Aq. If
such a decomposition is impossible, A is called irreducible.

CLAIM: An affine variety A is irreducible if and only if its ring of polynomial
functions ©4 has no zero divizors.

Proof: If A = Ay U Ay is a decomposition of A into a non-trivial union
of subvarieties, choose a non-zero function f € ©4 vanishing at Ay and g
vanishing at A,. The product of these non-zero functions vanishes in A =
A1 U Ao, hence fg = 0 In ©4. Conversely, if fg = 0, we decompose
A= Vf U Vg. |

11
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Irreducibility for smooth varieties

EXERCISE: Let M be an algebraic variety which is smooth and connected.
Prove that it is irreducible.

COROLLARY: Let A be an affine manifold such that its set Ag of smooth
points is dense in A and connected. Then A is irreducible.

Proof: If f and g are non-zero function such that fg = 0, the ring of poly-
nomial functions on Ag contains zero divizors. However, on a smooth,
connected complex manifold the ring of polynomial functions has no
zero divisors by analytic continuity principle. =

EXERCISE: Let X — Y be a morphism of affine manifols, where X is
irreducible, and its image in Y is dense. Prove that Y is also irreducible.

12



Algebraic geometry I, lecture 3 M. Verbitsky

Noetherian rings and irreducible components

DEFINITION: A ring is called Noetherian if any increasing chain of ideals
stabilizes: for any chain I1 CIp, C Iz C..onehas In =141 = 1I,40= ..

THEOREM: (Hilbert basis theorem)
Any finitely generated ring is Noetherian.

DEFINITION: An irreducible component of an algebraic set A is an irre-
ducible algebraic subset A’ C A such that A= A'"U A", and A" ¢ A”.

Remark 1: Let A1 D A> D ... D Ap D ... be a decreasing chain of algebraic
subsets in an algebraic variety. Then the corresponding ideals form an
iIncreasing chain of ideals: Ann(A1) C Ann(As) C Ann(A3z) C ...

THEOREM: Let A be an affine variety, and ©4 its ring of polynomial func-
tions. Assume that ©4 is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof: See the next slide m

Remark 2: From the noetherianity and Remark 1 it follows that A cannot
contain a strictly decreasing infinite chain of algebraic subvarieties.
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Noetherian rings and irreducible components (2)

THEOREM: Let A be an affine variety, and ©4 its ring of polynomial func-
tions. Assume that ©4 is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof. Stepl: Each point a € A belongs to a certain irreducible com-
ponent. Indeed, suppose that such a component does not exist. Then for
each decomposition A = A1 U A, of A onto algebraic sets, the set A; contain-
iNng a can be split non-trivially onto a union of algebraic sets, the component
containing a can also be split, and so on, ad infinitum. This gives a strictly
decreasing infinity sequence, a contradiction (Remark 2).

Step 2: We proved existence of an irreducible decomposition, and it remains
only to show that number of irreducible components of A is finite. Let
A = A; be an irreducible decomposition. Then each A; is not contained in
the union of the rest of A;.

Step 3: Let algebraic closure of a set X C C" be the intersection of all
algebraic subsets containing X. Clearly, it is algebraic (prove it!) Since
A = A;UU;=; Aj, the algebraic closure B; of A\A; does not contain A;. and
the sequence By D BiN By, D BN BN By C ... decreases strictly, unless
there are only finitely many irreducible components. Applying Remark 2
again, we obtain that the number of B; is finite. m
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