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REMINDER: Affine varieties and finitely generated rings

DEFINITION: Category of affine varieties over C: its objects are algebraic

subsets in Cn, morphisms – polynomial maps.

DEFINITION: Finitely generated ring over C is a quotient of C[t1, ..., tn]

by an ideal.

DEFINITION: Let R be a ring. An element x ∈ R is called nilpotent if

xn = 0 for some n ∈ Z>0.

Theorem 1: Let CR be a category of finitely generated rings over C without

non-zero nilpotents and Aff – category of affine varieties. Consider the func-

tor Φ : Aff −→ C
op
R mapping an algebraic variety X to the ring of polynomial

functions on X. Then Φ is an equivalence of categories.

Proof: Later in this lecture.
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Strong Nullstellensatz

DEFINITION: Let I ⊂ C[t1, ..., tn] be an ideal. Denote the set of common

zeros for I by V (I), with

V (I) = {(z1, ..., zn) ∈ Cn | f(z1, ..., zn) = 0∀f ∈ I}.

For Z ⊂ Cn an algebraic subset, denote by Ann(A) the set of all polynomials

P (t1, ..., tn) vanishing in Z.

THEOREM: (strong Nullstellensatz). For any ideal I ⊂ C[t1, ..., tn] such

that C[t1, ..., tn]/I has no nilpotents, one has Ann(V (I)) = I.

Proof: Later in this lecture.

REMARK: “Weak Nullstellensatz” claims that V (I) is never empty for any

non-trivial ideal I; “Strong Nullstellensatz” claims that I is uniquely deter-

mined by V (I) when R/I has no nilpotents.
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Strong Nullstellensatz and equivalence of categories

THEOREM: (strong Nullstellensatz). For any ideal I ⊂ C[t1, ..., tn] such

that C[t1, ..., tn]/I has no nilpotents, one has Ann(V (I)) = I.

Now we deduce Theorem 1 from Strong Nullstellensatz. This would

require us to construct a functor Ψ : C
op
R −→ Aff. Since any object R ∈

Ob(CR) is given as R = C[t1, ..., tn]/I, we define Ψ as Ψ(R) := V (I); the

functor Φ : Aff −→ C
op
R was defined as Z −→ Ann(Z).

Strong Nullstellensatz gives Ann(V (I)) = I, hence Φ(Ψ(R)) = R for any

finitely generated ring. It remains to prove V (Ann(Z)) = Z.

Clearly, V (Ann(Z)) ⊃ Z: any point z ∈ Z belongs to the set of common zeros

of Ann(Z). On the other hand, Z is a set of common zeros of a system P of

polynomial equations, giving Z = V (P) ⊃ V (Ann(Z)).
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Localization

DEFINITION: Localization R(F )) of a ring R with respect to F ∈ R is a
ring R[F−1], which is formally generated by the elements of form a/Fn and
relations a/Fn · b/Fm = ab/Fn+m, a/Fn + b/Fm = aFm+bFn

Fn+m , and aF k/F k+n =
a/Fn.

REMARK: Clearly, R(F ) = R[t]/(tF − 1).

EXAMPLE: Z[2−1], the ring of rational numbers with denominators 2k.
EXAMPLE: C[t, t−1], the ring of Laurent polynomials.

EXERCISE: Let R be a finitely generated ring over a field k. Prove that
R[F−1] is a finitely generated ring over k.

CLAIM 1: Suppose that R[F−1] = 0, where F ∈ R. Then F is nilpotent.

Proof. Step 1: R(F ) = R[t]/(tF − 1). Therefore, 1 = 0 implies 1 =
(Ft− 1)P , for some P ∈ R[t].

Step 2: Let P (t) =
∑
ait

i, where ai ∈ R. Then 1 = (Ft − 1)P implies
ai = ai−1F for all i > 0, and a0 = 1.

Step 3: This gives P =
∑
F iti, and Fn+1 = 0.
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Spectrum and localization

DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

EXERCISE: Let R
ϕ−→ R1 be a ring homomorphism. Prove that ϕ−1(p)

is a prime ideal, for any p ∈ SpecR1.

PROPOSITION: In other words, any morphism R−→R1 gives an injective
map of spectra SpecR[f−1] ↪→ SpecR.

Proof: Suppose that pf , qf ∈ SpecR(f), and p = q are their images in SpecR.
Then for each p ∈ pf , we have fNp ∈ q ⊂ qf ; since q is prime, this implies that
p ∈ q.

DEFINITION: Nilradical of a ring R is the set Nil(R) of all nilpotent ele-
ments of R.

THEOREM: Interesection P of all prime ideals of R is equal to Nil(R).

Proof: Clearly, P ⊃ Nil(R). Assume that, conversely, x /∈ Nil(R). Then
R[x−1] 6= 0, hence R[x−1] contains a prime ideal (the maximal one), and
its image in SpecR does not contaim x.
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Rabinowitz trick

DEFINITION: Let I ⊂ C[t1, ..., tn] be an ideal. Recall that the set of com-
mon zeros of I is denoted by V (I) (“vanishing set”, “null-set”, “zero
set”), and the set of all polynomials vanishing in Z ⊂ Cn is denoted Ann(Z)
(“annihilator”).

Theorem 1: Let I ⊂ C[t1, ..., tn] be an ideal, and f a polynomial function,
vanishing on V (I). Then fN ∈ I for some N ∈ Z>0.

Proof. Step 1: Consider an ideal I1 ⊂ C[t1, ..., tn+1] generated by I ⊂
C[t1, ..., tn] and ftn+1−1. Since the submodule of R generated by 〈ftn+1−
1, I〉 has no common zeros, I1 contains 1 by (weak) Nullstellensatz.

Step 2: Let R := C[t1, ..., tn]/I. Consider the map ζ : C[t1, ..., tn+1]−→R[f−1]
which is identity on t1, ..., tn and mapping tn+1 to f−1. Since ζ(I1) = 0, and
1 ∈ I1, one has 1 = 0 in R[f−1], giving R[f−1] = 0. By Claim 1, f is
nilpotent in R.

COROLLARY: (Strong Nullstellensatz)
Suppose that R := C[t1, ..., tn]/I is a ring without nilpotents. Then I =
Ann(VI)).

Proof: If a ∈ Ann(VI)), then an ∈ I by Theorem 1.
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Smooth points

DEFINITION: Let A ⊂ Cn is an algebraic subset. A point a ∈ A is called
smooth, if there exists a neighbourhood U of a ∈ Cn (in usual topology) such
that A ∩ U is a smooth 2k-dimensional real submanifold. A point is called
singular if such diffeomorphism does not exist. A variety is called smooth if
it has no singularities, and singular otherwise.

PROPOSITION: For any algebraic variety A and any smooth point a ∈ A,
a diffeomorphism between a neighbourhood of a and an open ball can be
chosen polynomial.

Proof. Step 1: Inverse function theorem. Let a ∈ M be a point on a
smooth k-dimensional manifold and f1, ..., fk functions on M such that their
differentials df1, ..., dfk are linearly independent in a. Then f1, ..., fk define a
coordinate system in a neighbourhood of a, giving a diffeomorphism of
this neighbourhood to an open ball.

Step 2: If a ∈ A ⊂ Cn is a smooth point of a k-dimensional embedded
manifold, there exists k complex linear functions on Cn which are linearly
independent on TaA.

Step 3: These function define diffeomorphism from a neighbourhood of
A to an open subset of Ck.
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Maximal ideal of a smooth point

REMARK: The set of smooth points of A is open.

CLAIM: Let mx be a maximal ideal of a smooth point of a k-dimensional

manifold M . Then dimCmx/m2
x = k.

Proof: Consider a map dx : mx −→ T ∗xM mapping a function f to df |x. Clearly,

dx is surjective, and satisfies ker dx = m2
x (prove it!)

CLAIM: A manifold A ⊂ C2 given by equation xy = 0 is not smooth in

a := (0,0).

Proof. Step 1: ma/m2
a is the quotient of the space of all polynomials,

vanishing in a, that is, degree > 1, by all polynomials of degree > 2, hence it

is 2-dimensional.

Step 2: Therefore, if a is smooth point of A, A is 2-dimensional in a

neighbourhood of (0,0). However, outside if a, A is a line, hence 1-

dimensional: contradiction.
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Hard to prove, but intiutively obvious observations

EXERCISE: Prove that the set of smooth points of an affine variety is

constructible, that is, obtained as a complement of an algebraic set to an

algebraic set.

Really hard exercise: Prove that any affine variety over C contains a

smooth point.

EXERCISE: Using these two exercises, prove that the set of smooth

points of A is dense in A.
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Irreducible varietiees

DEFINITION: A affine manifold A is called reducible if it can be expressed

as a union A = A1 ∪A2 of affine varieties, such that A1 6⊂ A2 and A2 6⊂ A1. If

such a decomposition is impossible, A is called irreducible.

CLAIM: An affine variety A is irreducible if and only if its ring of polynomial

functions OA has no zero divizors.

Proof: If A = A1 ∪ A2 is a decomposition of A into a non-trivial union

of subvarieties, choose a non-zero function f ∈ OA vanishing at A1 and g

vanishing at A2. The product of these non-zero functions vanishes in A =

A1 ∪ A2, hence fg = 0 in OA. Conversely, if fg = 0, we decompose

A = Vf ∪ Vg.
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Irreducibility for smooth varieties

EXERCISE: Let M be an algebraic variety which is smooth and connected.

Prove that it is irreducible.

COROLLARY: Let A be an affine manifold such that its set A0 of smooth

points is dense in A and connected. Then A is irreducible.

Proof: If f and g are non-zero function such that fg = 0, the ring of poly-

nomial functions on A0 contains zero divizors. However, on a smooth,

connected complex manifold the ring of polynomial functions has no

zero divisors by analytic continuity principle.

EXERCISE: Let X −→ Y be a morphism of affine manifols, where X is

irreducible, and its image in Y is dense. Prove that Y is also irreducible.
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Noetherian rings and irreducible components

DEFINITION: A ring is called Noetherian if any increasing chain of ideals
stabilizes: for any chain I1 ⊂ I2 ⊂ I3 ⊂ ... one has In = In+1 = In+2 = ...

THEOREM: (Hilbert basis theorem)
Any finitely generated ring is Noetherian.

DEFINITION: An irreducible component of an algebraic set A is an irre-
ducible algebraic subset A′ ⊂ A such that A = A′ ∪A′′, and A′ 6⊂ A′′.

Remark 1: Let A1 ⊃ A2 ⊃ ... ⊃ An ⊃ ... be a decreasing chain of algebraic
subsets in an algebraic variety. Then the corresponding ideals form an
increasing chain of ideals: Ann(A1) ⊂ Ann(A2) ⊂ Ann(A3) ⊂ ...

THEOREM: Let A be an affine variety, and OA its ring of polynomial func-
tions. Assume that OA is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof: See the next slide

Remark 2: From the noetherianity and Remark 1 it follows that A cannot
contain a strictly decreasing infinite chain of algebraic subvarieties.
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Noetherian rings and irreducible components (2)

THEOREM: Let A be an affine variety, and OA its ring of polynomial func-
tions. Assume that OA is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof. Step1: Each point a ∈ A belongs to a certain irreducible com-
ponent. Indeed, suppose that such a component does not exist. Then for
each decomposition A = A1∪A2 of A onto algebraic sets, the set Ai contain-
ing a can be split non-trivially onto a union of algebraic sets, the component
containing a can also be split, and so on, ad infinitum. This gives a strictly
decreasing infinity sequence, a contradiction (Remark 2).

Step 2: We proved existence of an irreducible decomposition, and it remains
only to show that number of irreducible components of A is finite. Let
A =

⋃
Ai be an irreducible decomposition. Then each Ai is not contained in

the union of the rest of Ai.

Step 3: Let algebraic closure of a set X ⊂ Cn be the intersection of all
algebraic subsets containing X. Clearly, it is algebraic (prove it!) Since
A = Ai ∪

⋃
j 6=iAj, the algebraic closure Bi of A\Ai does not contain Ai. and

the sequence B1 ⊃ B1 ∩ B2 ⊃ B1 ∩ B2 ∩ B3 ⊂ ... decreases strictly, unless
there are only finitely many irreducible components. Applying Remark 2
again, we obtain that the number of Bi is finite.
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