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Smooth points

DEFINITION: Let A ⊂ Cn is an algebraic subset. A point a ∈ A is called

smooth, if there exists a neighbourhood U of a ∈ Cn (in usual topology) such

that A ∩ U is a smooth 2k-dimensional real submanifold. A point is called

singular if such diffeomorphism does not exist. A variety is called smooth if

it has no singularities, and singular otherwise.

PROPOSITION: For any algebraic variety A and any smooth point a ∈ A,

a diffeomorphism between a neighbourhood of a and an open ball can be

chosen polynomial.

Proof. Step1: If a ∈ A ⊂ Cn is a smooth point of a k-dimensional embedded

manifold, there exists k complex linear functions on Cn such that their

differentials are independent in the tangent space TaA.

Step 2: By inverse function theorem, these functions define a diffeomor-

phism from a neighbourhood of A to an open subset of Ck.
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Analytic functions (reminder)

REMARK: In the coordinates defined by linear functions all regular (poly-

nomial) functions on A are analytic (equal to the sum of their Taylor

series).

In other polynomial coordinate systems, the Taylor series may be no longer

finite, but the regular functions remain analytic, because the inverse func-

tion theorem remains true in analytic category.

REMARK: In fact, all complex differentiable functions are analytic

(Cauchy), and the regular functions are clearly complex differentiable.
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Irreducible varietiees

DEFINITION: An affine variety A is called reducible if it can be expressed

as a union A = A1 ∪A2 of affine varieties, such that A1 6⊂ A2 and A2 6⊂ A1. If

such a decomposition is impossible, A is called irreducible.

CLAIM: An affine variety A is irreducible if and only if its ring of polynomial

functions OA has no zero divizors.

Proof: If A = A1 ∪ A2 is a decomposition of A into a non-trivial union

of subvarieties, choose a non-zero function f ∈ OA vanishing at A1 and g

vanishing at A2. The product of these non-zero functions vanishes in A =

A1 ∪ A2, hence fg = 0 in OA. Conversely, if fg = 0, we decompose

A = Vf ∪ Vg.

4



Algebraic geometry I, lecture 5 M. Verbitsky

Irreducibility for smooth varieties

CLAIM: Let M be an algebraic variety which is smooth and connected. Then

it is irreducible.

Proof: (“Analytic continuation principle”). Step 1

Let f, g be non-zero polynomial functions, fg = 0. Decomposing f, g onto

Taylor series around m ∈M , we obtain that the Taylor series for f or for

g vanish. Suppose it is f which has vanishing Taylor series, and let U ⊂ M

be the set where all derivatives of f vanish.

Step 2: Since U is an intersection of closed sets {x ∈M | f(i)(x) = 0}, it is

closed. However, an analytic function which has vanishing Taylor series in x

has to vanish in a neighbourhood of x, hence U is also open. An open and

closed subset of M is M or ∅, because M is connected.
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Irreducibility for smooth varieties (2)

COROLLARY: Let A be an affine variety such that its set A0 of smooth

points is dense in A and connected. Then A is irreducible.

Proof: If f and g are non-zero function such that fg = 0, the ring of poly-

nomial functions on A0 contains zero divizors. However, on a smooth,

connected complex manifold the ring of polynomial functions has no

zero divisors by analytic continuation principle.

REMARK: Converse is also true: an algebraic variety over C is irreducible

if and only if the set of its smooth points is connected. This is a

complicated result.

EXERCISE: Let X −→ Y be a morphism of affine manifols, where X is

irreducible, and its image in Y is dense. Prove that Y is also irreducible.
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Noetherian rings and irreducible components

DEFINITION: A ring is called Noetherian if any increasing chain of ideals
stabilizes: for any chain I1 ⊂ I2 ⊂ I3 ⊂ ... one has In = In+1 = In+2 = ...

THEOREM: (Hilbert basis theorem)
Any finitely generated ring is Noetherian.
Proof: Later today.

DEFINITION: An irreducible component of an algebraic set A is an irre-
ducible algebraic subset A′ ⊂ A such that A = A′ ∪A′′, and A′ 6⊂ A′′.

Remark 1: Let A1 ⊃ A2 ⊃ ... ⊃ An ⊃ ... be a decreasing chain of algebraic
subsets in an algebraic variety. Then the corresponding ideals form an
increasing chain of ideals: Ann(A1) ⊂ Ann(A2) ⊂ Ann(A3) ⊂ ...

THEOREM: Let A be an affine variety, and OA its ring of polynomial func-
tions. Assume that OA is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof: See the next slide

Remark 2: From the noetherianity and Remark 1 it follows that A cannot
contain a strictly decreasing infinite chain of algebraic subvarieties.
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Noetherian rings and irreducible components (2)

THEOREM: Let A be an affine variety, and OA its ring of polynomial func-
tions. Assume that OA is Noetherian. Then A is a union of its irreducible
components, which are finitely many.

Proof. Step1: Each point a ∈ A belongs to a certain irreducible com-
ponent. Indeed, suppose that such a component does not exist. Then for
each decomposition A = A1∪A2 of A onto algebraic sets, the set Ai contain-
ing a can be split non-trivially onto a union of algebraic sets, the component
containing a can also be split, and so on, ad infinitum. This gives a strictly
decreasing infinite sequence, a contradiction (Remark 2).

Step 2: We proved existence of an irreducible decomposition, and it remains
only to show that number of irreducible components of A is finite. Let
A =

⋃
Ai be an irreducible decomposition.

Step 3: Let algebraic closure of a set X ⊂ Cn be the intersection of all
algebraic subsets of Cn containing X. An intersection of algebraic sets is
algebraic, because it is defined by the ideal generated by the union of their
ideals. Since A = Ai ∪

⋃
j 6=iAj, the algebraic closure Bi of A\Ai does not

contain Ai. and the sequence B1 ⊃ B1 ∩ B2 ⊃ B1 ∩ B2 ∩ B3 ⊂ ... decreases
strictly, unless there are only finitely many irreducible components.
Applying Remark 2 again, we obtain that the number of Bi is finite.
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Noetherian rings

DEFINITION: A finitely generated ring is a quotient of a polynomial ring.

THEOREM: (Hilbert’s Basis Theorem)

Any finitely generated ring over a field is Noetherian.

Proof: Later in this lecture.

COROLLARY: For any affine manifold, its ring of functions is Noethe-

rian, hence the the irreducible decomposition exists and is finite.

REMARK: It suffices to prove Hilbert’s Basis Theorem for the ring of poly-

nomials. Indeed, any finitely generated ring is a quotient of the polynomial

ring, but the set of ideals of the quotient ring A/I is injectively mapped

to the set of ideals of R.

REMARK: Therefore, Hilbert’s Basis Theorem would follow if we prove

that R[t] is Noetherian for any Noetherian ring R.

EXERCISE: Find an example of a ring which is not Noetherian.

9



Algebraic geometry I, lecture 5 M. Verbitsky

Finitely generated ideals

DEFINITION: Finitely generated ideal in a ring is an ideal 〈a1, ..., an〉 of
sums

∑
biai, where {ai} is a fixed finite set of elements of R, called generators

of R.

LEMMA: Let I ⊂ R be a finitely generated ideal, and I0 ⊂ I1 ⊂ I2 ⊂ ... an
increasing chain of ideals, such that

⋃
n In = I. Then this chain stabilises.

Proof: Let I = 〈a1, ..., an〉, and IN be an ideal in the chain I0 ⊂ I1 ⊂ I2 ⊂ ...

which contains all ai. Then IN = I.

CLAIM: A ring R is Noetherian if and only if all its ideals are finitely
generated.

Proof: For any chain of ideals I0 ⊂ I1 ⊂ I2 ⊂ ..., finite generatedness of
I =

⋃
Ii guarantees stabilization of this chain, as follows from Lemma

above.

Conversely, if R is Noetherian, and I any ideal, take I0 = 0 and let Ik ⊂ I be
obtained by adding to Ik−1 an element of I not containing in Ik−1. Since
the chain {Ik} stabilizes, I is finitely generated.
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Noetherian modules

DEFINITION: A module over a ring R is a vector space M equipped with

an algebra homomorphism R−→ End(M).

EXAMPLE: A subspace I ⊂ R in a ring is an ideal if and only if I is an

R-submodule of R, considered as an R-module.

DEFINITION: A module M over R is called Noetherian if any increasing

chain of submodules of M stabilizes.

REMARK: Any submodules and quotient modules of a Noetherian R-module

are again Noetherian.
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Finitely generated R-modules

DEFINITION: An R-module is called finitely generated if it is a quotient

of a free module Rn by its submodule.

EXERCISE: Show that a module M is Noetherian iff any M ′ ⊂ M is

finitely generated. Use this to prove that direct sums of Noetherian

modules are Noetherian.

LEMMA: A ring R is Noetherian if and only if it is Noetherian as an

R-module.

Proof: Ideals in R is the same as R-submodules of R, stabilization of a chain

of R-submodules in R is literally the same as stabilization of a chain of ideals

in R.

REMARK: Let M be a module over R[t] which is Noetherian as an R-module,

Then it is Noetherian as R[t]-module.

COROLLARY: If R is Noetherian, then R[t]/(tN) = RN is a Noetherian

R-module. Therefore, the ring R[t]/(tN) is Noetherian.
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Proof of Hilbert’s basis theorem

PROPOSITION: Let R be a Noetherian ring. Then the polynomial ring
R[t] is also Noetherian.

Proof. Step1: Let I ⊂ R[t] be an ideal. We need to show that it is finitely
generated. Consider the ideal I0 ⊂ R generated by all leading coefficients of
all P (t) ∈ I. Since R is Noetherian, I0 is finitely generated: I0 = 〈a1, ..., an〉,
where all ai are leading coefficients of Pi(t) ∈ I.

Step 2: Let N be the maximum of all degrees of Pi. For each Q(t) ∈
I with the leading coefficient

∑
aibi there exists a polynomial PQ(t) of

degree no bigger than N with the same leading coefficient: PQ(T ) =∑
i Pi(t)bit

N−degPi.

Step 3: Let Q̃(t) be the remainder of the long division of Q(t) ∈ I by PQ(y).
Then Q̃(t) = Q(t) mod 〈P1(t), ..., Pn(t)〉, and deg Q̃(t) < N .

Step 4: We have constructed an R-module embedding

M := I/〈P1(t), ..., Pn(t)〉 −→R[t]/(tN).

Since M is a submodule of R[t]/(tN), it is a Noetherian module, as shown
above, hence finitely generated. Pick a set of polynomials Q1(t), ..., Qm(t) ∈ I,
generating M . Then {Qi(t), Pi(t)} generate I.
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