Geometria Algébrica I

lecture 5: Noetherian rings and irreducible affine varieties

Misha Verbitsky

IMPA, sala 232

August 31, 2018

Smooth points

DEFINITION: Let $A \subset \mathbb{C}^n$ is an algebraic subset. A point $a \in A$ is called **smooth**, if there exists a neighbourhood U of $a \in \mathbb{C}^n$ (in usual topology) such that $A \cap U$ is a smooth 2k-dimensional real submanifold. A point is called **singular** if such diffeomorphism does not exist. A variety is called **smooth** if it has no singularities, and **singular** otherwise.

PROPOSITION: For any algebraic variety A and any smooth point $a \in A$, a diffeomorphism between a neighbourhood of a and an open ball **can be chosen polynomial**.

Proof. Step1: If $a \in A \subset \mathbb{C}^n$ is a smooth point of a *k*-dimensional embedded manifold, there exists *k* complex linear functions on \mathbb{C}^n such that their differentials are independent in the tangent space T_aA .

Step 2: By inverse function theorem, these functions **define a diffeomor**phism from a neighbourhood of A to an open subset of \mathbb{C}^k .

Analytic functions (reminder)

REMARK: In the coordinates defined by linear functions **all regular (polynomial)** functions on *A* are analytic (equal to the sum of their Taylor series).

In other polynomial coordinate systems, the Taylor series may be no longer finite, but **the regular functions remain analytic,** because the inverse function theorem remains true in analytic category.

REMARK: In fact, all complex differentiable functions are analytic (Cauchy), and the regular functions are clearly complex differentiable.

Irreducible varietiees

DEFINITION: An affine variety A is called **reducible** if it can be expressed as a union $A = A_1 \cup A_2$ of affine varieties, such that $A_1 \not\subset A_2$ and $A_2 \not\subset A_1$. If such a decomposition is impossible, A is called **irreducible**.

CLAIM: An affine variety A is **irreducible** if and only if its ring of polynomial functions \mathcal{O}_A has no zero divizors.

Proof: If $A = A_1 \cup A_2$ is a decomposition of A into a non-trivial union of subvarieties, choose a non-zero function $f \in \mathcal{O}_A$ vanishing at A_1 and g vanishing at A_2 . The product of these non-zero functions vanishes in $A = A_1 \cup A_2$, hence fg = 0 in \mathcal{O}_A . Conversely, if fg = 0, we decompose $A = V_f \cup V_g$.

Irreducibility for smooth varieties

CLAIM: Let *M* be an algebraic variety which is smooth and connected. **Then** it is irreducible.

Proof: ("Analytic continuation principle"). Step 1

Let f,g be non-zero polynomial functions, fg = 0. Decomposing f,g onto Taylor series around $m \in M$, we obtain that the Taylor series for f or for g vanish. Suppose it is f which has vanishing Taylor series, and let $U \subset M$ be the set where all derivatives of f vanish.

Step 2: Since *U* is an intersection of closed sets $\{x \in M \mid f^{(i)}(x) = 0\}$, it is closed. However, an analytic function which has vanishing Taylor series in *x* has to vanish in a neighbourhood of *x*, hence *U* is also open. **An open and closed subset of** *M* is *M* or \emptyset , because *M* is connected.

Irreducibility for smooth varieties (2)

COROLLARY: Let A be an affine variety such that its set A_0 of smooth points is dense in A and connected. Then A is irreducible.

Proof: If f and g are non-zero function such that fg = 0, the ring of polynomial functions on A_0 contains zero divizors. However, on a smooth, connected complex manifold the ring of polynomial functions has no zero divisors by analytic continuation principle.

REMARK: Converse is also true: an algebraic variety over \mathbb{C} is irreducible if and only if the set of its smooth points is connected. This is a complicated result.

EXERCISE: Let $X \longrightarrow Y$ be a morphism of affine manifols, where X is irreducible, and its image in Y is dense. **Prove that** Y is also irreducible.

Noetherian rings and irreducible components

DEFINITION: A ring is called **Noetherian** if any increasing chain of ideals stabilizes: for any chain $I_1 \subset I_2 \subset I_3 \subset ...$ one has $I_n = I_{n+1} = I_{n+2} = ...$

THEOREM: (Hilbert basis theorem) Any finitely generated ring is Noetherian. Proof: Later today.

DEFINITION: An irreducible component of an algebraic set A is an irreducible algebraic subset $A' \subset A$ such that $A = A' \cup A''$, and $A' \not \subset A''$.

Remark 1: Let $A_1 \supset A_2 \supset ... \supset A_n \supset ...$ be a decreasing chain of algebraic subsets in an algebraic variety. Then the corresponding ideals form an increasing chain of ideals: Ann $(A_1) \subset Ann(A_2) \subset Ann(A_3) \subset ...$

THEOREM: Let A be an affine variety, and \mathcal{O}_A its ring of polynomial functions. Assume that \mathcal{O}_A is Noetherian. Then A is a union of its irreducible components, which are finitely many.

Proof: See the next slide ■

Remark 2: From the noetherianity and Remark 1 it follows that *A* cannot contain a strictly decreasing infinite chain of algebraic subvarieties.

7

Noetherian rings and irreducible components (2)

THEOREM: Let A be an affine variety, and \mathcal{O}_A its ring of polynomial functions. Assume that \mathcal{O}_A is Noetherian. Then A is a union of its irreducible components, which are finitely many.

Proof. Step1: Each point $a \in A$ belongs to a certain irreducible component. Indeed, suppose that such a component does not exist. Then for each decomposition $A = A_1 \cup A_2$ of A onto algebraic sets, the set A_i containing a can be split non-trivially onto a union of algebraic sets, the component containing a can also be split, and so on, *ad infinitum*. This gives a strictly decreasing infinite sequence, a contradiction (Remark 2).

Step 2: We proved existence of an irreducible decomposition, and **it remains** only to show that number of irreducible components of *A* is finite. Let $A = \bigcup A_i$ be an irreducible decomposition.

Step 3: Let **algebraic closure** of a set $X \subset \mathbb{C}^n$ be the intersection of all algebraic subsets of \mathbb{C}^n containing X. An intersection of algebraic sets is algebraic, because it is defined by the ideal generated by the union of their ideals. Since $A = A_i \cup \bigcup_{j \neq i} A_j$, the algebraic closure B_i of $A \setminus A_i$ does not contain A_i . and the sequence $B_1 \supset B_1 \cap B_2 \supset B_1 \cap B_2 \cap B_3 \subset ...$ decreases strictly, unless there are only finitely many irreducible components. Applying Remark 2 again, we obtain that the number of B_i is finite.

Noetherian rings

DEFINITION: A finitely generated ring is a quotient of a polynomial ring.

THEOREM: (Hilbert's Basis Theorem) Any finitely generated ring over a field is Noetherian.

Proof: Later in this lecture.

COROLLARY: For any affine manifold, **its ring of functions is Noetherian**, hence the the irreducible decomposition exists and is finite.

REMARK: It suffices to prove Hilbert's Basis Theorem for the ring of polynomials. Indeed, any finitely generated ring is a quotient of the polynomial ring, but the set of ideals of the quotient ring A/I is injectively mapped to the set of ideals of R.

REMARK: Therefore, Hilbert's Basis Theorem would follow if we prove that R[t] is Noetherian for any Noetherian ring R.

EXERCISE: Find an example of a ring which is not Noetherian.

Finitely generated ideals

DEFINITION: Finitely generated ideal in a ring is an ideal $\langle a_1, ..., a_n \rangle$ of sums $\sum b_i a_i$, where $\{a_i\}$ is a fixed finite set of elements of R, called **generators** of R.

LEMMA: Let $I \subset R$ be a finitely generated ideal, and $I_0 \subset I_1 \subset I_2 \subset ...$ an increasing chain of ideals, such that $\bigcup_n I_n = I$. Then this chain stabilises.

Proof: Let $I = \langle a_1, ..., a_n \rangle$, and I_N be an ideal in the chain $I_0 \subset I_1 \subset I_2 \subset ...$ which contains all a_i . Then $I_N = I$.

CLAIM: A ring R is Noetherian if and only if all its ideals are finitely generated.

Proof: For any chain of ideals $I_0 \subset I_1 \subset I_2 \subset ...$, finite generatedness of $I = \bigcup I_i$ guarantees stabilization of this chain, as follows from Lemma above.

Conversely, if R is Noetherian, and I any ideal, take $I_0 = 0$ and let $I_k \subset I$ be obtained by adding to I_{k-1} an element of I not containing in I_{k-1} . Since the chain $\{I_k\}$ stabilizes, I is finitely generated.

Noetherian modules

DEFINITION: A module over a ring R is a vector space M equipped with an algebra homomorphism $R \longrightarrow End(M)$.

EXAMPLE: A subspace $I \subset R$ in a ring is an ideal if and only if I is an *R*-submodule of *R*, considered as an *R*-module.

DEFINITION: A module M over R is called **Noetherian** if any increasing chain of submodules of M stabilizes.

REMARK: Any submodules and quotient modules of a Noetherian *R*-module are again Noetherian.

Algebraic geometry I, lecture 5

M. Verbitsky

Finitely generated *R***-modules**

DEFINITION: An *R*-module is called **finitely generated** if it is a quotient of **a free module** R^n by its submodule.

EXERCISE: Show that a module M is Noetherian iff any $M' \subset M$ is finitely generated. Use this to prove that direct sums of Noetherian modules are Noetherian.

LEMMA: A ring *R* is Noetherian if and only if it is Noetherian as an *R*-module.

Proof: Ideals in R is the same as R-submodules of R, stabilization of a chain of R-submodules in R is literally the same as stabilization of a chain of ideals in R.

REMARK: Let *M* be a module over R[t] which is Noetherian as an *R*-module, **Then it is Noetherian as** R[t]-module.

COROLLARY: If *R* is Noetherian, then $R[t]/(t^N) = R^N$ is a Noetherian *R*-module. Therefore, **the ring** $R[t]/(t^N)$ **is Noetherian.**

Proof of Hilbert's basis theorem

PROPOSITION: Let R be a Noetherian ring. Then the polynomial ring R[t] is also Noetherian.

Proof. Step1: Let $I \subset R[t]$ be an ideal. We need to show that it is finitely generated. Consider the ideal $I_0 \subset R$ generated by all leading coefficients of all $P(t) \in I$. Since R is Noetherian, I_0 is finitely generated: $I_0 = \langle a_1, ..., a_n \rangle$, where all a_i are leading coefficients of $P_i(t) \in I$.

Step 2: Let *N* be the maximum of all degrees of P_i . For each $Q(t) \in I$ with the leading coefficient $\sum a_i b_i$ there exists a polynomial $P_Q(t)$ of degree no bigger than *N* with the same leading coefficient: $P_Q(T) = \sum_i P_i(t)b_i t^{N-\deg P_i}$.

Step 3: Let $\tilde{Q}(t)$ be the remainder of the long division of $Q(t) \in I$ by $P_Q(y)$. Then $\tilde{Q}(t) = Q(t) \mod \langle P_1(t), ..., P_n(t) \rangle$, and deg $\tilde{Q}(t) < N$.

Step 4: We have constructed an *R*-module embedding

$$M := I/\langle P_1(t), ..., P_n(t) \rangle \longrightarrow R[t]/(t^N).$$

Since M is a submodule of $R[t]/(t^N)$, it is a Noetherian module, as shown above, hence finitely generated. Pick a set of polynomials $Q_1(t), ..., Q_m(t) \in I$, generating M. Then $\{Q_i(t), P_i(t)\}$ generate I.