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Group representations

DEFINITION: Representation of a group G is a homomorphism G−→GL(V ).

In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no G-

invariant subspaces. Semisimple representation is a direct sum of irreducible

ones.

REMARK: If the group G acts on a vector space V , it also acts on all tensor

powers of V (action os extended by multiplicativity). In particular, G acts on

V ∗⊗ V ∗ as g(h)(x, y) = h(g(x), g(y)), for any g ∈ G, h ∈ V ∗⊗ V ∗ and x, y ∈ V .

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is

called G-invariant if the corresponding tensor h ∈ V ∗ ⊗R V ∗ is G-invariant.
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G-invariant metrics

CLAIM:
A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).

COROLLARY: Let V be a representation of a finite group (over R or C).
Then V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let h be an arbitrary metric, and 1
|G|

∑
g∈G g(h) its average over the G

action. The previous claim implies that it is a metric. Since G acts on itself
bijectively, interchanging all terms in the sum, it is G-invariant.

COROLLARY: Let E ⊂ V be a subrepresentation in a finite group repre-
sentation over R or C. Then V can be decomposed onto a direct sum of
two G-representations V = W ⊕W ′.

Proof: Choose a G-invariant metric on V , and let W⊥ be the orthogonal
complement to W . Then W⊥ is also G-invariant (check this). This gives a
decomposition V = W ⊕W⊥.

COROLLARY: Any finite-dimensional representation of a finite group
is semisimple.
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Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps

...−→A1 −→A2 −→A3 −→ ... such the kernel of each map is the image of the

previous one. A short exact sequence is exact sequence of form 0−→A
i−→

B
j−→ C −→ 0. Here “exact” means that i is injective, j surjective, and

image of i is kernel of j.

DEFINITION: A functor A−→ FA on the category of R-modules or vector

spaces is called left exact if any exact sequence 0−→A−→B −→ C −→ 0 is

mapped to an exact sequence

0−→ FA−→ FB −→ FC,

right exact if it is mapped to an exact sequence

FA−→ FB −→ FC −→ 0,

and exact if the sequence

0−→ FA−→ FB −→ FC −→ 0

is exact.
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Invariants and coinvariants

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V G as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v − g(v), where g ∈ G, v ∈ V .

CLAIM: Let V be an irreducible representation of G. Then its invariants
and co-ivariants are equal 0 if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then VG = V G.

EXERCISE: Prove that the functor V −→ V G is left exact, and V −→ VG
is right exact.

COROLLARY: For any finite group G, the functor of G-invariants is
exact.

REMARK: The averaging map

m−→
1

|G|
∑
g∈G

g(m)

gives a projection of V to V G, and the kernel of this map is the kernel of
the natural projection V −→ VG
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Ring of invariants and quotient space

DEFINITION: Action of a group G on an affine manifold A is the action

of G on the ring OA of polynomial functions on A.

REMARK: By Strong Nullstellensatz, this is the same as action of G on

A by automorphisms.

REMARK: We want to define the quotient space A/G as the algebraic variety

associated with the invariant ring OG
A .

Problem # 1: We need to show that the ring OG
A is finitely generated

(Noether theorem).

Problem # 2: We need to identify the maximal ideals in OG
A with the

elements of the quotient set A/G.
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group

acting on R by automorphisms. Then the ring RG of G-invariants is finitely

generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RG is finite generated for R = C[z1, ..., zn], where R acts on

polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of V −→ V G
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Ideals in R and RG

LEMMA: Let R be a ring, G a finite group acting on R, RG the ring of

G-invariants, and I ⊂ RG an ideal. Then ideal RI satisfies AvG(RI) =

AvG(R)I = RGI = I, where AvG : R−→RG denotes the averaging map.

COROLLARY: Let I1 ( I be ideals in RG. Then RI1 ( RI.

COROLLARY 1: In these assumptions, if R is Noetherian, then RG is

also Noetherian.

Proof: Any infinite, strictly monotonous sequence I0 ( I1 ( ... of ideals in RG

gives a strictly monotonous sequence RI0 ( RI1 ( ... in R.
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Graded rings

DEFINITION: A graded ring is a ring A∗, A∗ =
⊕∞

i=0 Ai, with multiplication

which satisfies Ai · Aj ⊂ Ai+j (“grading is multiplicative”). A graded ring is

called of finite type if all Ai are finitely dimensional.

EXAMPLE: Polynomial ring C[V ] =
⊕

i Symi V is clearly graded.
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Graded rings (2)

Claim 1: Let A∗ be a graded ring of finite type. Then A∗ is Noetherian ⇔
it is finitely generated.

Proof. Step1: If A∗ is finitely generated, it is Noetherian by Hilbert’s basis
theorem.

Step 2: Conversely, suppose that A∗ is Noetherian. Then the ideal
⊕

i>0 Ai ⊂
A∗ is finitely generated. Let ai ∈ Ani be generators of this ideal over A∗. We
are going to show that products of ai generate A∗.

Step 3: Let z ∈ A∗ be a graded element of smallest degree which is not
generated by products of ai. Since ai generate the ideal

⊕
i>0 Ai ⊂ A∗, we can

express z as z =
∑

i fiai, where fi ∈ A∗. However, deg fi < deg z, hence all fi
are generated by products of ai. Then all fi are generated by products of ai.

A caution: In this argument, two notions of “finitely generated” are present:
finitely generated ideals (an additive notion) and finitely generated rings over
C (multiplicative). These two notions are completely different! One is
defined for ideals (or R-modules), another for a ring over a field. Only the
name is the same (bad terminology).
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Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis z1, ..., zn, and C[V ] =⊕
i Symi V = C[z1, ..., zn] the corresponding polynomial ring. Suppose that G

acts on V by linear automorphisms. We extend this action to the symmet-

ric tensors
⊕

i Symi V multiplicatively. This implies that G acts on C[V ] by

automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants)

Let G act linearly on the polynomial ring C[V ]. Then the invariant ring

C[V ]G is finitely generated.

Proof. Step1: Since the action of G preserves the grading on C[V ], the ring

C[V ]G is graded and of finite type.

Step 2: C[V ]G is Noetherian, because C[V ] is Noetherian, and invariant

rings in Noetherian rings are Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim

1.
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Noether theorem

THEOREM: (Noether theorem)

Let R be a finitely generated ring over C, and G a finite group acting on R by

automorphisms. Then the ring RG of G-invariants is finitely generated.

Proof. Step1: Let f1, ..., fm be generators of R, and {g1, ..., gk} = G. Consider

the space V ⊂ R generated by all vectors gifj. Clearly, V ⊂ R is V -invariant,

and the natural homomorphism C[V ]−→R = C[V ]/I is surjective and

G-invariant.

Step 2: The natural map C[V ]G −→RG is surjective, because the functor

W −→WG is exact.

Step 3: The ring C[V ]G is finitely generated by Noether theorem for polyno-

mial invariants, hence its quotient RG is also finitely generated.
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