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Group representations

DEFINITION: Representation of a group G is a homomorphism G — GL(V).
In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no G-
invariant subspaces. Semisimple representation is a direct sum of irreducible
ones.

REMARK: If the group G acts on a vector space V, it also acts on all tensor
powers of V (action os extended by multiplicativity). In particular, G acts on
V*@V* as g(h)(x,y) = h(g(x),g(y)), forany g€ G, he V*@V* and z,y € V.

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is
called G-invariant if the corresponding tensor h € V* @p V* is G-invariant.
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G-invariant metrics

CLAIM:
A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).
|

COROLLARY: Let V be a representation of a finite group (over R or C).
Then V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let h be an arbitrary metric, and ﬁzgeg g(h) its average over the G
action. The previous claim implies that it is a metric. Since G acts on itself
bijectively, interchanging all terms in the sum, it is G-invariant. =

COROLLARY: Let E C V be a subrepresentation in a finite group repre-
sentation over R or C. Then V can be decomposed onto a direct sum of
two G-representations V=W ¢ W’'.

Proof: Choose a G-invariant metric on V, and let WL be the orthogonal
complement to W. Then W+ is also G-invariant (check this). This gives a
decomposition V=W oW-L. m

COROLLARY: Any finite-dimensional representation of a finite group
IS semisimple. =
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Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps
... — A1 —> Ao —> A3z — ... such the kernel of each map is the image of the

previous one. A short exact sequence is exact sequence of form O v A s

B -5 C — 0. Here “exact” means that i is injective, j surjective, and
image of : is kernel of ;.

DEFINITION: A functor A— F'A on the category of R-modules or vector
spaces is called left exact if any exact sequence 0O — A —B —C —0 is
mapped to an exact sequence

O—FA—FB— FC,

right exact if it is mapped to an exact sequence

FA—FB—FC—Q0,

and exact if the sequence

O—FA—FB—FC—70

IS exact.
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Invariants and coinvariants

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V& as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v — g(v), where g € G,v € V.

CLAIM: Let V be an irreducible representation of . Then its invariants
and co-ivariants are equal O if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then Vg = 17458

EXERCISE: Prove that the functor V — VC is left exact, and V — V
IS right exact.

COROLLARY: For any finite group G, the functor of G-invariants is
exact.

REMARK: The averaging map

m—>iZg(m)

gives a projection of V to V&, and the kernel of this map is the kernel of
the natural projection V.— Vg4
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Ring of invariants and quotient space

DEFINITION: Action of a group G on an affine manifold A is the action
of G on the ring © 4 of polynomial functions on A.

REMARK: By Strong Nullstellensatz, this is the same as action of G on
A by automorphisms.

REMARK: We want to define the quotient space A/G as the algebraic variety
associated with the invariant ring ©.

Problem # 1: We need to show that the ring (C)g is finitely generated
(Noether theorem).

Problem #£ 2: We need to identify the maximal ideals in @g with the
elements of the quotient set A/G.
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group
acting on R by automorphisms. Then the ring RG of G-invariants is finitely
generated.

Scheme of the proof:
1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RC is finite generated for R = Clz1, ..., zn], where R acts on
polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of V — 1745
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Ideals in R and R®

LEMMA: Let R be a ring, G a finite group acting on R, RG the ring of
G-invariants, and I C R® an ideal. Then ideal RI satisfies Avg(RI) =
Ava(R)I = RGI = I, where Avg : R — RC denotes the averaging map. m

COROLLARY: Let I; C I be ideals in RS. Then RI; C RI. m

COROLLARY 1: In these assumptions, if R is Noetherian, then RC is
also Noetherian.

Proof: Any infinite, strictly monotonous sequence Ig C I7 € ... of ideals in RG
gives a strictly monotonous sequence RIog C RI; C ... in R. =
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Graded rings

DEFINITION: A graded ring is a ring A*, A* = {2, A* with multiplication
which satisfies A . A7 ¢ A'*+J (“grading is multiplicative”). A graded ring is
called of finite type if all A® are finitely dimensional.

EXAMPLE: Polynomial ring C[V] = &; Sym®V is clearly graded.
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Graded rings (2)

Claim 1: Let A* be a graded ring of finite type. Then A* is Noetherian <
it is finitely generated.

Proof. Stepl: If A* is finitely generated, it is Noetherian by Hilbert's basis
theorem.

Step 2: Conversely, suppose that A* is Noetherian. Then the ideal @;~¢ A C
A* is finitely generated. Let a; € A™ be generators of this ideal over A*. We
are going to show that products of a; generate A*.

Step 3: Let z € A* be a graded element of smallest degree which is not
generated by products of a;. Since a; generate the ideal @, A C A*, we can
express z as z = > ; f;a;, where f; € A*. However, deg f; < deg z, hence all f;
are generated by products of a;. Then all f; are generated by products of a;.
|

A caution: In this argument, two notions of ‘“finitely generated’ are present:
finitely generated ideals (an additive notion) and finitely generated rings over
C (multiplicative). These two notions are completely different! One is
defined for ideals (or R-modules), another for a ring over a field. Only the
name is the same (bad terminology).
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Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis zq1,...,2n, and C[V] =
P, Sym*V = C|z1, ..., zn] the corresponding polynomial ring. Suppose that G
acts on V by linear automorphisms. We extend this action to the symmet-
ric tensors @, Sym®V multiplicatively. This implies that G acts on C[V] by
automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants)
Let G act linearly on the polynomial ring C[V]. Then the invariant ring
C[V]€ is finitely generated.

Proof. Stepl: Since the action of G preserves the grading on C[V], the ring
C[V]¢ is graded and of finite type.

Step 2: C[V]¢ is Noetherian, because C[V] is Noetherian, and invariant
rings in Noetherian rings are Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim
1. m
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Noether theorem

THEOREM: (Noether theorem)
Let R be a finitely generated ring over C, and G a finite group acting on R by
automorphisms. Then the ring RG of G-invariants is finitely generated.

Proof. Stepl: Let fq,..., fm be generators of R, and {g1, ..., 9} = G. Consider
the space V C R generated by all vectors g;f;. Clearly, V. C R is V-invariant,
and the natural homomorphism C[V] — R = C[V]/I is surjective and
G-invariant.

Step 2: The natural map C[V]¢ — R is surjective, because the functor
W — WG is exact.

Step 3: The ring C[V]G is finitely generated by Noether theorem for polyno-
mial invariants, hence its quotient RG is also finitely generated. m
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