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Tensor product

DEFINITION: Let R be a ring, and M, M’ modules over R. We denote by
M ®pr M’ an R-module generated by symbols m®@m/, m € M, m' € M’, modulo
relations

r(m®@m’) = (rm) @ m' = m® (rm/),

(m+m)m =mem'+m;m/,

m®@ (m'+mi) =mem'+memi for all r € R,m,m1 € M,m',m7 € M’. Such
an R-module is called the tensor product of M and M’ over R.

REMARK: Suppose that M is generated over R by a set {m; € M}, and M’
generated by {m} € M'}. Then M ®@g M’ is generated by {m; ® m’}.

EXERCISE: Find two non-zero R-modules A, B such that AQpr B = 0 when
a. R=2%.
b. R= CM the ring of smooth functions on a manifold.

c. R = CJ[t] (polynomial ring).
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Bilinear maps

DEFINITION: Let Mjy,M>, M be modules over a ring R. Bilinear map
(M, M>) 2, M is a map satisfying o(rm,m') = o(m,rm’) = rp(m,m’),
p(m+my,m") = p(m,m’) + p(my,m’), p(m,m' +m7) = p(m,m’') + p(m,m?7).

THEOREM: (Universal property of the tensor product)
For any bilinear map B : M; X M> — M there exists a unigue homomor-
phism b: M7 ® M> — M, making the following diagram commutative:

M1><M2

M ® Mo

REMARK: If R is the field k, R-modules are vector spaces, and the previous
theorem proves that Bil(Mq x M»>, k) = (M1 ® M>)*. For finite-dimensional
M;, it gives M1 ® My = (M1 ® M»>)** = Bil(M1 x M»>, k)*.
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Universal property of the tensor product and categories

DEFINITION: Initial object of a category C is an object X € ©O6(C) such
that for any Y € ©O6(C) there exists a unique morphism X — Y.

EXAMPLE: Zero space is an initial object in the category of vector spaces.
The ring Z is an initial object in the category of rings with unit.

EXERCISE: Prove that initial object is unique.

DEFINITION: Let Mq,M> are R-modules, and ¢ the following category.
Objects of C are pairs (R-module M, bilinear map My x My — M). Mor-
phisms of ¢ are homomorphisms M Ly M making the following diagram

commutative:
My x My — M

ol |+

M1 X M2 — M’
CLAIM: (Universal property of the tensor product)
Tensor product My, x M- is the initial object in C.

COROLLARY: Tensor product is uniquely determined by the universal
property.

Indeed, the initial object is unique.
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The internal #om and exact functors

DEFINITION: Let M, M’ be R-modules. Consider the group Homp(M, M")
of R-module homomorphisms. We consider Homp(M, M’) as an R-module,
using ro(m) := p(rm). This R-module is called internal Hom functor, de-
noted #tom.

Claim1l: Let0 — M — M>, — M3z — 0 be an exact sequence of R-modules.
Then the natural sequences

0 — Homp(M3, N) —> Homp(Mo, N) — Homp(Mi,N)
and
0 — Homp(N,M1) — Homp(N, My) — Homp(N, M3)

are exact, for any R-module M.

Proof: Let’'s prove exactness of the first sequence. Exactnhess in the term
FHomp(M3, N) is clear. If v € #Homgr(M>, N) is mapped to O in projection to
Homp(M1,N), this means that v|;;; = 0O, giving a morphism v € #Homp(M3, N),
which is mapped to v. Exactness of the second sequence is left as an

exercise. m
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The internal #om and tensor product

REMARK: Universal property of @ implies

Fomp(M1 g Mo, M) = domp(My,Hompr(Mo, M)).

Indeed, the group #Homgr(Mqi,Homp(My, M)) is identified with the group
of bilinear maps M X M, — M.

COROLLARY: Let 0 — My — My — M3 — 0 be an exact sequence of
R-modules. Then for any R-modules N, N’, the sequence

0 — Homp(Mz® N',N) — Homp(Mo> @ N',N) — Homp(M1 @ N', N)

IS exact.

Proof: Using Claim 1 twice, we obtain an exact sequence
0 — Homp(N',FHomp(Msz, N))
— Fomp(N', FHomp(Mo, N)) — Homp(N',#Homp(Msz, N)).

Then we use an isomorphism #Homp(A ®p B,M) = Homgr(A,Homgr(B,M))
proven above. =
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Functor #om, part 2

REMARK: Exactness of the sequence M{ — M, — M3 — 0 implies ex-
actness of 0 — #Homp(M3, N) — FHomp(Mo, N) — Homp(M1,N). We are
going to prove the converse: exactness of the second sequence (for all
N) implies exactness of the first one.

. d d
DEFINITION: A complex of R-modules is a sequence M1 —» M, —
d
M3 — ... such that d;od;; 1 = 0.

LEMMA: Consider a complex E* of R-modules My , Mo» LN Mz — 0
such that 0 — #omp(Ms, N) £ Fomp(Mo, N) 5% Fomp(Mq, N) is exact
for all N. Then E* is also exact.

Proof: Injectivity of pp implies surjectivity of p, if we put N = M3z/imp.
Exactness of the second sequence in term #Homgr(Mo, N) implies exactness of
E in term My when N = Mp/imu. =
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Exactness of the tensor product
THEOREM: Let M{ — M, — M3 — 0 be an exact sequence of R-modules.
Then the sequence

M1®RM—>M2®RM—>M3®RM—>O (>I<)

IS exact.

Proof: Using the universal property of tensor product, we have shown that

0 — Homp(M3QQ M, N) — Homp(M>® M,N) — Homp(M1 & M, N)

is exact for any N. Aplying the previous lemma, we obtain that (*) is also
exact. m

COROLLARY: Let I C Rbe anidealin aring. Then M®r(R/I) = M/IM.

Proof: Apply the functor M to the exact sequence0 — I — R— R/I — 0.
We obtain IM — M — (R/I) ®p M — 0. =
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Tensor product: examples
EXERCISE: Prove that Q®y Z/27 = 0.

REMARK: Let Z -25 Z be a multiplication by 2. Then the sequence

7 @7 (Z)27) 25 7 @y (Z)2Z) — (Z/2Z) @7 (Z/2Z) —> 0
obtained from 0 — Z -2 Z —s 7Z/27Z — 0 by ®7(Z/2Z) is not left exact.
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Tensor product of rings: geometric meaning

EXERCISE: Let f: X — Y be a morphism of algebraic varieties, y € Y a
point. Prove that f—1(y) is affine.

QUESTION: How one describes the ring of regular functions on f~1(y)?
HINT: Use the tensor product of rings!

EXERCISE: Let X Cc C", Y C CF pe algebraic subvarieties. Prove that
X x Y is also algebraic.

HINT: Use the tensor product of rings!
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Tensor product of rings

DEFINITION: Let A,B be rings, C — A, ¢ — B homomorphisms. Con-
sider A and B as C-modules, and let A ®c B be their tensor product. Define
the ring multiplication on A~ B as a®b-d @ ¥ = ad’ @ bb/. This defines
tensor product of rings.

EXAMPLE: CJty,...,t] ®c Clz1,...,2n] = C|[t1, ..., tg, 21, ..., 2n]. Indeed, if we
denote by Cy4[t1, ..., t;] the space of polynomials of degree d, then Cylt1, ..., tL]®¢c
Cyglz1, .-, 2n] is polynomials of degree d in {t;} and d" in {z}.

EXAMPLE: For any homomorphism ¢ : C— A, the ring A®o (C/I) is a
quotient of A by the ideal A-p(I). This follows from M ®gr(R/I) = M/IM.

PROPOSITION: (associativity of ®)
Let C — A,C — B,C" — B, C’ — D be ring homomorphisms. Then (A Q¢

B)®c D =A®c (B®c D).

Proof: Universal property of ® implies that Hom((A ®¢c B) ® D, M) =
Hom(A ®¢c (B ®c D), M) is the space of polylinear maps A B® D — M
satisfying ¢(ca,b,d) = ¢(a,cb,d) and ¢(a,c’d, d) = ¢(a,b,c/'d). However, an ob-
ject X of category is defined by the functor Hom(X,-) uniquely (prove it).
u
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