Geometria Algébrica I

lecture 8: Tensor product of rings and fibered product

Misha Verbitsky

IMPA, sala 232

September 14, 2018

Tensor product (reminder)

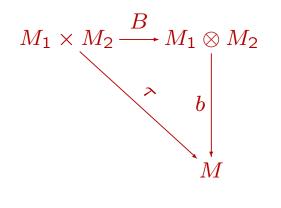
DEFINITION: Let *R* be a ring, and *M*, *M'* modules over *R*. We denote by $M \otimes_R M'$ an *R*-module generated by symbols $m \otimes m'$, $m \in M, m' \in M'$, modulo relations

 $r(m \otimes m') = (rm) \otimes m' = m \otimes (rm'),$ (m + m₁) $\otimes m' = m \otimes m' + m_1 \otimes m',$

 $m \otimes (m' + m'_1) = m \otimes m' + m \otimes m'_1$ for all $r \in R, m, m_1 \in M, m', m'_1 \in M'$. Such an *R*-module is called **the tensor product of** *M* and *M'* over *R*.

REMARK: Suppose that M is generated over R by a set $\{m_i \in M\}$, and M' generated by $\{m'_j \in M'\}$. Then $M \otimes_R M'$ is generated by $\{m_i \otimes m'_j\}$.

THEOREM: (Universal property of the tensor product) For any bilinear map $B: M_1 \times M_2 \longrightarrow M$ there exists a unique homomorphism $b: M_1 \otimes M_2 \longrightarrow M$, making the following diagram commutative:



Exactness of the tensor product (reminder)

THEOREM: Let $M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. **Then the sequence**

$$M_1 \otimes_R M \longrightarrow M_2 \otimes_R M \longrightarrow M_3 \otimes_R M \longrightarrow 0 \quad (*)$$

is exact.

COROLLARY: Let $I \subset R$ be an ideal in a ring. Then $M \otimes_R (R/I) = M/IM$.

Proof: Apply the functor $\otimes_R M$ to the exact sequence $0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$. We obtain $IM \longrightarrow M \longrightarrow (R/I) \otimes_R M \longrightarrow 0$.

Tensor product of rings

DEFINITION: Let A, B be rings, $C \longrightarrow A$, $C \longrightarrow B$ homomorphisms. Consider A and B as C-modules, and let $A \otimes_{\mathbb{C}} B$ be their tensor product. Define the ring multiplication on $A \otimes_C B$ as $a \otimes b \cdot a' \otimes b' = aa' \otimes bb'$. This defines **tensor product of rings**.

EXAMPLE: $\mathbb{C}[t_1, ..., t_k] \otimes_{\mathbb{C}} \mathbb{C}[z_1, ..., z_n] = \mathbb{C}[t_1, ..., t_k, z_1, ..., z_n]$. Indeed, if we denote by $\mathbb{C}_d[t_1, ..., t_k]$ the space of polynomials of degree d, then $\mathbb{C}_d[t_1, ..., t_k] \otimes_{\mathbb{C}} \mathbb{C}_{d'}[z_1, ..., z_n]$ is polynomials of degree d in $\{t_i\}$ and d' in $\{z_i\}$.

EXAMPLE: For any homomorphism $\varphi : \mathbb{C} \longrightarrow A$, the ring $A \otimes_C (C/I)$ is a quotient of A by the ideal $A \cdot \varphi(I)$. This follows from $M \otimes_R (R/I) = M/IM$.

PROPOSITION: (associativity of \otimes)

Let $C \longrightarrow A, C \longrightarrow B, C' \longrightarrow B, C' \longrightarrow D$ be ring homomorphisms. Then $(A \otimes_C B) \otimes_{C'} D = A \otimes_C (B \otimes_{C'} D)$.

Proof: Universal property of \otimes implies that $\text{Hom}((A \otimes_C B) \otimes_{C'} D, M) = \text{Hom}(A \otimes_C (B \otimes_{C'} D), M)$ is the space of polylinear maps $A \otimes B \otimes D \longrightarrow M$ satisfying $\varphi(ca, b, d) = \varphi(a, cb, d)$ and $\varphi(a, c'b, d) = \varphi(a, b, c'd)$. However, an object X of category is defined by the functor $\text{Hom}(X, \cdot)$ uniquely (prove it).

Tensor product of rings and preimage of a point

DEFINITION: Recall that the spectrum of a finitely generated ring R is the corresponding algebraic variety, denoted by Spec(R)

PROPOSITION: Let $f : X \longrightarrow Y$ be a morphism of affine varieties, $f^* : \mathfrak{O}_Y \longrightarrow \mathfrak{O}_X$ the corresponding ring homomorphism, $y \in Y$ a point, and \mathfrak{m}_y its maximal ideal. Denote by R_1 the quotient of $R := \mathfrak{O}_X \otimes_{\mathfrak{O}Y} (\mathfrak{O}_Y/\mathfrak{m}_y)$ by its nilradical. Then $\operatorname{Spec}(R_1) = f^{-1}(y)$.

Proof. Step1: If $\alpha \in \mathcal{O}_Y$ vanishes in y, $f^*(\alpha)$ vanishes in all points of $f^{-1}(y)$. This implies that **the set** V_I **of common zeros of the ideal** $I := \mathcal{O}_X \cdot f^* \mathfrak{m}_y$ **contains** $f^{-1}(y)$.

Step 2: If $f(x) \neq y$, take a function $\beta \in \mathfrak{O}_Y$ vanishing in y and non-zero in f(x). Since $\varphi^*(\beta)(x) \neq 0$ and $\beta(y) = 0$, this gives $x \notin V_I$. We proved that the set of common zeros of the ideal $I = \mathfrak{O}_X \cdot f^*\mathfrak{m}_y$ is equal to $f^{-1}(y)$.

Step 3: Now, strong Nullstellensatz implies that $\mathcal{O}_{f^{-1}(y)}$ is a quotient of $R = \mathcal{O}_X/I$ by nilradical.

Tensor product of rings and product of varieties

LEMMA: $A \otimes_C B \otimes_B B' = A \otimes_C B'$.

Proof: Follows from associativity of tensor product and $B \otimes_B B' = B'$.

LEMMA: $A \otimes_C (B/I) = A \otimes_C B/(1 \otimes I)$, where $1 \otimes I$ denotes the ideal $A \otimes_C I$. **Proof:** Using $M \otimes_R (R/I) = M/IM$, we obtain

 $A \otimes_C (B/I) = (A \otimes_C B) \otimes_B (B/I) = (A \otimes_C B)/(1 \otimes I) \quad \blacksquare$

Lemma 1: Let A, B be finitely generated rings without nilpotents, $R := A \otimes_{\mathbb{C}} B$, and $N \subset R$ nilradical. Then $\operatorname{Spec}(R/N) = \operatorname{Spec}(A) \times \operatorname{Spec}(B)$.

Proof. Step1: Let $A = \mathbb{C}[t_1, ..., t_n]/I$, $B = \mathbb{C}[z_1, ..., z_k]/J$. Then $\mathbb{C}[t_1, ..., t_n] \otimes_{\mathbb{C}} \mathbb{C}[z_1, ..., z_k] = \mathbb{C}[t_1, ..., t_n, z_1, ..., z_k]$. Applying the previous lemma twice, we obtain $A \otimes_{\mathbb{C}} B = \mathbb{C}[t_1, ..., t_n, z_1, ..., z_k]/(I + J)$. Here I + J means $I \otimes 1 \oplus 1 \otimes J$.

Step 2: The set V_{I+J} of common zeros of I + J is $\text{Spec}(A) \times \text{Spec}(B) \subset \mathbb{C}^n \times \mathbb{C}^k$.

Step 3: Hilbert Nullstellensatz implies $\text{Spec}(R/N) = V_{I+J} = \text{Spec}(A) \times \text{Spec}(B)$.

REMARK: We shall see that a tensor product $R := A \otimes_{\mathbb{C}} B$ of reduced rings is reduced.

Tensor product of rings and product of varieties (2)

LEMMA: For any finitely-generated ring A over \mathbb{C} , intersection P of all its maximal ideals is its nilradical.

REMARK: Let A, B be finite generated rings over \mathbb{C} , $B \longrightarrow A$ a homomorphism, and $\mathfrak{m} \subset B$ a maximal ideal. Then the ring $A \otimes_B (B/\mathfrak{m})$ can contain **nilpotents**, even if A and B have no zero divisors.

EXERCISE: Give an example of such rings A, B.

THEOREM: Let A, B be finitely-generated, reduced rings over \mathbb{C} , and $R := A \otimes_{\mathbb{C}} B$ their product. Then R is reduced (that is, has no nilpotents).

Proof: see the next slide.

COROLLARY: Spec(A) × Spec(B) = Spec(A $\otimes_{\mathbb{C}} B$).

Tensor product of rings and product of varieties (2)

THEOREM: Let A, B be finitely-generated, reduced rings over \mathbb{C} , and $R := A \otimes_{\mathbb{C}} B$ their product. Then R is reduced.

Proof. Step1: By the previous lemma, it suffices to show that the intersection P of maximal ideals of R is 0.

Step 2: Let X, Y denote the varieties Spec(A), Spec(B). Lemma 1 implies that maximal ideals of R are points of $X \times Y$.

Step 3: Every such ideal is given as $\mathfrak{m}_x \otimes \mathfrak{O}_Y + \mathfrak{O}_X \otimes \mathfrak{m}_y$, where $x \in X, y \in Y$. Then

$$P = \bigcap_{X \times Y} (\mathfrak{m}_x \otimes \mathfrak{O}_Y + \mathfrak{O}_X \otimes \mathfrak{m}_y) = \bigcap_Y \left(\left(\bigcap_X \mathfrak{m}_x \otimes \mathfrak{O}_Y \right) + \mathfrak{O}_X \otimes \mathfrak{m}_y \right) = \bigcap_Y \mathfrak{O}_X \otimes \mathfrak{m}_y = 0.$$

This follows from $\bigcap_Y 1 \otimes \mathfrak{m}_y = \bigcap_X \mathfrak{m}_x \otimes 1 = 0$ since A and B are reduced.

Preimage and diagonal

Claim 2: Let $f : X \longrightarrow Y$ be a morphism of algebraic varieties, $f^* : \mathfrak{O}_Y \longrightarrow \mathfrak{O}_X$ the corresponding ring homomorphism, $Z \subset Y$ a subvariety, and I_Z its ideal. Denote by R_1 the quotient of a ring $R := \mathfrak{O}_X \otimes_{\mathfrak{O}Y} (\mathfrak{O}_Y/I_Z) = \mathfrak{O}_X/f^*(I_Z)$ by its nilradical. **Then** $\operatorname{Spec}(R_1) = f^{-1}(Z)$.

Proof: Clearly, the set of common zeros of the ideal $J := f^*(I_Z)$ contains $f^{-1}(Z)$. On the other hand, for any point $x \in X$ such that $f(x) \notin Z$ there exist a function $g \in J$ such that $g(x) \neq 0$. Therefore, $f^{-1}(Z) = V_J$, and strong Nullstellensatz implies that $\mathcal{O}_{f^{-1}(Z)} = R_1$.

Claim 3: Let M be an algebraic variety, and $\Delta \subset M \times M$ the diagonal, and $I \subset \mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M$ the ideal generated by $r \otimes 1 - 1 \otimes r$ for all $r \in \mathcal{O}_M$. Then \mathcal{O}_Δ is $\mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M / I$.

Proof. Step1: By definition of the tensor product, $\mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M / I = \mathcal{O}_M \otimes_{\mathcal{O}_M} \mathcal{O}_M = \mathcal{O}_M$, hence it is reduced. If we prove that $\Delta = V_I$, the statement of the claim would follow from strong Nullstellensatz.

Step 2: Clearly, $\Delta \subset V_I$. To prove the converse, let $(m, m') \in M \times M$ be a point not on diagonal, and $f \in \mathcal{O}_M$ a function which satisfies $f(m) = 0, f(m') \neq 0$. Then $f \otimes 1 - 1 \otimes f$ is non-zero on (m, m').

Fibered product

DEFINITION: Let $X \xrightarrow{\pi_X} M, Y \xrightarrow{\pi_Y} M$ be maps of sets. Fibered product $X \times_M Y$ is the set of all pairs $(x, y) \in X \times Y$ such that $\pi_X(x) = \pi_Y(y)$.

CLAIM: Let $X \xrightarrow{\pi_X} M, Y \xrightarrow{\pi_Y} M$ be morphism of algebraic varieties, $R := \mathcal{O}_X \otimes_{\mathcal{O}_M} \mathcal{O}_Y$, and R_1 the quotient of R by its nilradical. Then $\text{Spec}(R_1) = X \times_M Y$.

Proof: Let *I* be the ideal of diagonal in $\mathcal{O}_M \otimes_{\mathbb{C}} \mathcal{O}_M$. Since *I* is generated by $r \otimes 1 - 1 \otimes r$ (Claim 3), $R = \mathcal{O}_X \otimes_{\mathbb{C}} \mathcal{O}_Y / (\pi_X \times \pi_Y)^*(I)$. Applying Claim 2, we obtain that $\operatorname{Spec}(R_1) = (\pi_X \times \pi_Y)^{-1}(\Delta)$.

Initial and terminal objects

DEFINITION: Commutative diagram in category *C* is given by the following data. There is a directed graph (graph with arrows). For each vertex of this graph we have an object of category *C*, and each arrow corresponds to a morphism of the associated objects. **These morphisms are compatible, in the following way.** Whenever there exist two ways of going from one vertex to another, the compositions of the corresponding arrows are equal.

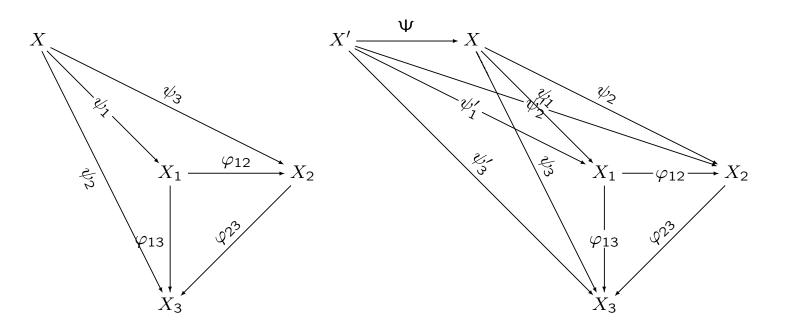
DEFINITION: An initial object of a category is an object $I \in Ob(C)$ such that Mor(I, X) is always a set of one element. A terminal object is $T \in Ob(C)$ such that Mor(X, T) is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique.

M. Verbitsky

Limits and colimits of diagrams

DEFINITION: Let $S = \{X_i, \varphi_{ij}\}$ be a commutative diagram in \mathcal{C} , and $\vec{\mathcal{C}}_S$ be a category of pairs (object X in \mathcal{C} , morphisms $\psi_i : X \longrightarrow X_i$, defined for all X_i) making the diagram formed by $(X, X_i, \psi_i, \varphi_{ij})$ commutative.



Morphisms $Mor({X, \psi_i}, {X', \psi'_i})$, are morphisms $\Psi \in Mor(X, X')$, making the diagram formed by $(X, X', \psi_i, \psi'_i, \varphi_{ij})$ commutative. The terminal object in this category is called **limit**, or **inverse limit** of the diagram S.

DEFINITION: Colimit, or **direct limit** is obtained from the previous definition by inverting all arrows and replacing "terminal" by "initial".

Products and coproducts

EXAMPLE: Let S be a diagram with two vertices X_1 and X_2 and no arrows. The inverse limit of S is called **product** of X_1 and X_2 , and inverse limit **the coproduct**.

EXAMPLE: Products in the category of sets, vector spaces and topological spaces are the usual products of sets, vector spaces and topological spaces **(check this)**.

EXAMPLE: Coproduct in the category of groups is called **free product**, or **amalgamated product**. Coproduct of the group \mathbb{Z} with itself is called **free group**. Coproduct in the category of vector spaces is also the usual product of vector spaces.

Products and coproducts (2)

EXERCISE: Prove that the product of algebraic varieties is their product in this category.

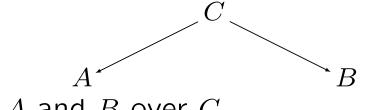
EXERCISE: Prove that coproduct of rings over \mathbb{C} in the category of rings is their tensor product.

EXERCISE: Prove that coproduct of reduced rings over \mathbb{C} in the category of reduced rings is the quotient of their tensor product over a nilradical.

Since the category of algebraic varieties is equivalent to the category of finitely generated reduced rings, this gives another proof of the theorem.

THEOREM: Let A, B be finitely generated reduced rings over \mathbb{C} . Then $\operatorname{Spec}(A \otimes_{\mathbb{C}} B/I) = \operatorname{Spec}(A) \times \operatorname{Spec}(B)$, where I is nilradical.

Fibered product



is called **coproduct** of A and B over C.

EXERCISE: Prove that the fibered product of algebraic varieties is the same as their product in the category of algebraic varieties.

EXERCISE: Prove that the coproduct of rings A and B over C is $A \otimes_C B$. Prove that the coproduct of reduced rings A and B over C in the category of reduced rings $A \otimes_C B/I$, where I is nilradical.

Using strong Nullstellensatz again, we obtain **CLAIM:** Let $X \xrightarrow{\pi_X} M, Y \xrightarrow{\pi_Y} M$ be morphisms of affine varieties, $R := \mathcal{O}_X \otimes_{\mathcal{O}_M} \mathcal{O}_Y$, and R_1 the quotient of R by its nilradical. Then $\text{Spec}(R_1) = X \times_M Y$.