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lecture 9: Finite-dimensional k-algebras

Misha Verbitsky

IMPA, sala 232

September 17, 2018

1



Algebraic geometry I, lecture 9 M. Verbitsky

Field extensions

DEFINITION: An extension of a field k is a field K containing k. We
write “K is an extension of k” as [K : k].

DEFINITION: Let k ⊂ K be a field contained in a field. In this case, we say
that k is a subfield of K, and K is extension of k. An element x ∈ K is called
algebraic over K if x is a root of a non-zero polynomial with coefficients in
k. An element which is not algebraic is called transcendental.

THEOREM: A sum and a product of algebraic numbers is algebraic.

DEFINITION: A field extension K ⊃ k is called algebraic if all elements of
K are algebraic over k. A field k is called algebraically closed if all algebraic
extensions of k are trivial.

EXAMPLE: The field C is algebraically closed.

DEFINITION: In this lecture, k-algebra is a ring containg a field k, not
necessarily with unity. All k-algebras are tacitly assumed commutative.
Homomorphisms of k-algebras are k-linear map compatible with the mul-
tiplication.
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Minimal polynomials

CLAIM: Let K be a finite-dimensional k-algebra with unity and without zero

divisors. Then K is a field.

Proof: An injective endomorphism of finite-dimensional spaces is surjective.

Therefore, for each x ∈ K, there exists y ∈ K such that xy = 1.

DEFINITION: Let v be an element of a finite-dimensional k-algebra R, and

P (t) = tn + an−1t
n−1 + . . . a polynomial of smallest possible degree with

coefficients in k satisfying P (v) = 0. This polynomial is called the minimal

polynomial of v ∈ R.

CLAIM: Let v ∈ R be an element of finite-dimensional algebra R over k, and

P (t) its minimal polynomial. Then the subalgebra Rv ⊂ R generated by v

is isomorphic to k[t]/(P ).

Proof: By definition, Rv is a quotient of k[t] by an ideal I of all polynomials

R(t) such that R(v) = 0. Since k[t] is the principal ideal ring (handout 3),

I = (Q) for some polynomial Q(t) satisfying Q(v) = 0. Then Q is the

minimal polynomial.
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Irreducible polynomials

THEOREM: The polynomial ring k[t] is factorial (admits the unique prime

decomposition).

Proof: See handout 3.

DEFINITION: A polynomial P (t) ∈ k[t] is irreducible if it is not a product

of polynomials P1, P2 ∈ k[t] of positive degree.

PROPOSITION: Let (P ) ⊂ k[t] be a principal ideal generated by the poly-

nomial P (t). Then the polynomial P (t) is irreducible if and only if the

quotient ring k[t]/(P ) is a field.

Proof. Step1: The polynomial P is irreducible if and only if (P ) is prime.

This follows because k[t] is a factorial ring.

Step 2: The quotient ring k[t]/(P ) is finite-dimensional over k. Then, it is a

field if and only if it has no zero divisors.
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Primitive extensions

DEFINITION: Let P (t) ∈ k[t] be an irreducible polynomial. A field k[t]/(P ) is

called an extension of k obtained by adding a root of P (t). The extension

[k[t]/(P ) : k] is called primitive.

CLAIM: Let [K : k] be a finite extension. Then K can be obtained from

k by a finite chain of primitive extensions. In other words, there exists

a sequence of intermediate extensions [K = Kn : Kn−1 : Kn−2 : ... : K0 = k]

such that each [Ki : Ki−1] is primitive.
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Artinian algebras over a field

DEFINITION: A commutative, associative k-algebra R is called Artinian

algebra if it is finite-dimensional as a vector space over k. Artinian algebra

is called semisimple if it has no non-zero nilpotents.

DEFINITION: Let R1, ..., Rn be k-algebras. Consider their direct sum ⊕Ri
with the natural (term by term) multiplication and addition. This algebra is

called direct sum of Ri, and denoted ⊕Ri.

Today we are going to prove the following theorem.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct

sum of fields, and this decomposition is uniquely defined.

6



Algebraic geometry I, lecture 9 M. Verbitsky

Idempotents

DEFINITION: Let v ∈ R be an element of an algebra R satisfying v2 = v.

Then v is called idempotent.

REMARK: A product of two idemponents is clearly an idempotent.

If e is an idemponent, then 1 − e is also an idempotent: (1 − e)2 =

1− 2e+ e2 = 1− e.

COROLLARY: For each idemponent e ∈ R, one has e(1−e) = 0. Therefore,

each idemponent e ∈ A defines a decomposition of A into a direct sum:

A = eA⊕ (1− e)A.

7



Algebraic geometry I, lecture 9 M. Verbitsky

All Artinian algebras contain idempotents

THEOREM: Let A be an Artinian k-algebra without nilpotents. Then A
contains an idempotent.

Proof. Step1: Since A is finite-dimensional, every decreasing chain of ideals
stabilizes. Therefore, A contains an ideal I ⊂ A which has no non-zero
proper ideals. We shall consider I as a sub-algebra in A.

Step 2: Since A has no nilpotents, for each non-zero z ∈ I we have z2 6= 0.
Since I is minimal, we have zI = I.

Step 3: Since I is finite-dimensional, all elements of I are invertible as
endomorphisms of I.

Step 4: Since I is finite-dimensional, the elements z, z2, z3, ... ∈ End I are
linearly dependent, which gives a polynomial relation P (z) = 0. If this
polynomial has zero constant term, we divide it by z, and obtain another
polynomial with the same property. Using induction, we obtain a polyno-
mial relation P (z) = 0 with non-zero constant term. This gives a relation
IdI = az + bz2 + cz3 + ... in the ring Endk(I), with a, b, c, ... ∈ k.

Step 5: The element U := az + bz2 + cz3 + ... ∈ I satisfies Ux = x for any
x ∈ I. Therefore, U is an idempotent in A, and unity in I.
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Structure theorem for semisimple Artinian algebras

REMARK: Step 5 proves the following useful statement. Let I be a commu-

tative Artinian algebra without zero divisors. Then I containes unit, that

is, I is a field.

COROLLARY: Let A be a semisimple Artinian algebra, that is, a finite-

dimensional commutative k-algebra without nilpotents. Then A is a direct

sum of fields

Proof: Let I ⊂ A be a non-trivial ideal. As shown above, I contains a non-

zero idempotent a. Then a and b := 1 − a idempotents satisfying ab = 0,

a + b = 1. This gives a direct sum decomposition A = aA ⊕ (1 − a)A.

Using induction in dimA, we may assume already that aA and (1 − a)A are

direct sum of fields.
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Structure theorem for semisimple Artinian algebras: uniqueness of de-

composition

LEMMA: Let A be a direct sum of fields, A =
⊕
i ki. Then the decompo-

sition A =
⊕
i ki is defined uniquely, up to permutation of summands.

Proof: Let A =
⊕n
i=1 ki =

⊕m
j=1 k

′
j. and a1, ..., an, b1, ..., bn be the correspond-

ing unipotents. Then the pairwise products {aibj} give a family of unipotents

which satisfies
∑
aibj = (

∑
ai)

(∑
bj
)

= 1 and aibjai′bj′ = 0 unless i = i′, j = j′.
Unless all unipotents aibj are equal to ai, this gives a direct sum decompo-

sition for each subfield ki, which is impossible. Therefore, the sets {bj} and

{ai} coincide.
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Finite morphisms

REMARK: Let M be a finitely generated R-module, and R−→R′ a ring
homomorphism. Then M ⊗RR′ is a finitely generated R′-module. Indeed,
if M is generated by x1, ..., xn, then M ⊗R R′ is generated by x1, ..., xn.

DEFINITION: A morphism X −→ Y of affine varieties is called finite if the
ring OX is a finitely generated module over OY . In this case, OX is called an
integral extension of OY .

THEOREM: Let X
f−→ Y be a finite morphism. Then for any point y ∈ Y ,

the preimage f−1(y) is finite.

Proof. Step1: Since OX is finite generated as an OY -module, the ring R :=
OX⊗OY

(OY /my) is finitely generated as an OY /my-module. Since OY /my = C,
we obtain that R is an Artinian algebra over C.

Step 2: Let N ⊂ R be a nilradical. As shown above, Spec(R/N) is a finite
set.

Step 3: On the other hand, as shown in the last lecture, Spec(R/N) =
f−1(y).
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Bilinear invariant forms

DEFINITION: Let R be a k-algebra, and g : R × R−→ k a k-bilinear sym-

metric form on R. The form g is called invariant if g(x, yz) = g(xy, z) for all

x, y, z ∈ R.

REMARK: If R has unity, for any invariant form g we have g(x, y) = h(xy,1),

hence g is determined by a linear functional a−→ g(a,1).

EXAMPLE: Consider the ring R[x, y]/(xn+1, yn+1), and let ε
(∑

aijx
iyj
)

:=

ann. The corresponding bilinear invariant form g(x, y) := ε(xy) is non-

derenerate (prove this).

CLAIM: Let [K : k] be a field extension, and ε a non-zero k-linear functional

on K. Then the bilinear form g(x, y) := ε(xy) is non-degenerate.

Proof: Suppose ε(a) 6= 0. Then g(x, x−1a) 6= 0.
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The trace form

DEFINITION: Trace tr(A) of a linear operator A ∈ Endk(kn) represented by

a matrix (aij) is
∑n
i=1 aii.

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear

form a, b−→ tr(ab), mapping a, b to the trace of endomorphism Lab ∈ EndkR,

where lab(x) = abx. This form is called the trace form, and denoted as

trk(ab).

REMARK: Let [K : k] be a finite field extension. As shown above, the trace

form trk(ab) is non-degenerate, unless trk is identically 0.
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Separable extensions

DEFINITION: A field extension [K : k] is called separable if the trace form

trk(ab) is non-zero.

REMARK: If char k = 0, every field extension is separable, because

trk(1) = dimkK.

THEOREM: Let R be an Artinian algebra over k with non-degenerate trace

form. Then R is semisimple.

Proof: Since trk(ab) = 0 for any nilpotent a (indeed, the trace of a nilpotent

operator vanishes), the ring R contains no non-zero nilpotents.

14



Algebraic geometry I, lecture 9 M. Verbitsky

Tensor product of field extensions

LEMMA: Let R, R′ be Artinian k-algebras. Denote the corresponding trace
forms by g, g′. Consider the tensor product R ⊗k R′ with a natural structure
of Artinian k-algebra. Then the trace form on R⊗kR′ is equal g⊗ g′, that
is,

trR⊗kR′(x⊗ y, z ⊗ t) = g(x, z)g′(y, t). (∗)

Proof: Let V,W be vector spaces over k, and µ, ρ endomorphisms of V,W .
Then tr(µ ⊗ ρ) = tr(µ) tr(ρ), which is clear from the block decomposition of
the matrix µ ⊗ ρ. This gives the trace for any decomposable vector
r ⊗ r′ ∈ R ⊗k R′. The equation (*) is extended to the rest of R ⊗k R′ by
because decomposable vectors generate R⊗k R′.

COROLLARY: Let [K1 : k], [K2 : k] be separable extensions. Then the
Artinian k-algebra K1 ⊗k K2 is semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on K1 ⊗k K2 is non-degenerate, because g ⊗ g′ is
non-degenerate whenever g, g′ is non-degenerate.

REMARK: In particular, if char k = 0, the product of finite extensions of
the field k is always a direct sum of fields.
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