Geometria Algébrica I

lecture 10: Primitive element theorem

Misha Verbitsky

IMPA, sala 232

September 21, 2018

Field extensions (reminder)

DEFINITION: An extension of a field k is a field K containing k. We write "K is an extension of k" as [K : k].

DEFINITION: Let $k \subset K$ be a field contained in a field. In this case, we say that k is a **subfield** of K, and K is **extension** of k. An element $x \in K$ is called **algebraic** over K if x is a root of a non-zero polynomial with coefficients in k. An element which is not algebraic is called **transcendental**.

THEOREM: A sum and a product of algebraic numbers is algebraic.

DEFINITION: A field extension $K \supset k$ is called **algebraic** if all elements of K are algebraic over k. A field k is called **algebraically closed** if all algebraic extensions of k are trivial.

EXAMPLE: The field \mathbb{C} is algebraically closed.

DEFINITION: In this lecture, k-algebra is a ring containg a field k, not necessarily with unity. **All** k-algebras are tacitly assumed commutative. **Homomorphisms of** k-algebras are k-linear map compatible with the multiplication.

Irreducible polynomials (reminder)

THEOREM: The polynomial ring k[t] is factorial (admits the unique prime decomposition).

Proof: See handout 3. ■

DEFINITION: A polynomial $P(t) \in k[t]$ is **irreducible** if it is not a product of polynomials $P_1, P_2 \in k[t]$ of positive degree.

PROPOSITION: Let $(P) \subset k[t]$ be a principal ideal generated by the polynomial P(t). Then **the polynomial** P(t) **is irreducible if and only if the quotient ring** k[t]/(P) **is a field.**

DEFINITION: Let $P(t) \in k[t]$ be an irreducible polynomial. A field k[t]/(P) is called **an extension of** k **obtained by adding a root of** P(t). The extension [k[t]/(P) : k] is called **primitive**.

CLAIM: Let [K : k] be a finite extension. Then K can be obtained from k by a finite chain of primitive extensions. In other words, there exists a sequence of intermediate extensions $[K = K_n : K_{n-1} : K_{n-2} : ... : K_0 = k]$ such that each $[K_i : K_{i-1}]$ is primitive.

Artinian algebras over a field (reminder)

DEFINITION: A commutative, associative k-algebra R is called **Artinian** algebra if it is finite-dimensional as a vector space over k. Artinian algebra is called **semisimple** if it has no non-zero nilpotents.

DEFINITION: Let $R_1, ..., R_n$ be k-algebras. Consider their direct sum $\oplus R_i$ with the natural (term by term) multiplication and addition. This algebra is called **direct sum of** R_i , and denoted $\oplus R_i$.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct sum of fields, and this decomposition is uniquely defined.

The trace form (reminder)

DEFINITION: Trace tr(A) of a linear operator $A \in End_k(k^n)$ represented by a matrix (a_{ij}) is $\sum_{i=1}^n a_{ii}$.

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear form $a, b \longrightarrow tr(ab)$, mapping a, b to the trace of endomorphism $L_{ab} \in End_k R$, where $l_{ab}(x) = abx$. This form is called **the trace form**, and denoted as $tr_k(ab)$.

REMARK: Let [K : k] be a finite field extension. As shown above, the trace form $tr_k(ab)$ is non-degenerate, unless tr_k is identically 0.

Separable extensions (reminder)

DEFINITION: A field extension [K : k] is called **separable** if the trace form $tr_k(ab)$ is non-zero.

REMARK: If char k = 0, every field extension is separable, because $tr_k(1) = \dim_k K$.

THEOREM: Let R be an Artinian algebra over k with non-degenerate trace form. Then R is semisimple.

Proof: Since $tr_k(ab) = 0$ for any nilpotent a (indeed, the trace of a nilpotent operator vanishes), the ring R contains no non-zero nilpotents.

Tensor product of field extensions

LEMMA: Let R, R' be Artinian k-algebras. Denote the corresponding trace forms by g, g'. Consider the tensor product $R \otimes_k R'$ with a natural structure of Artinian k-algebra. Then the trace form on $R \otimes_k R'$ is equal $g \otimes g'$, that is,

$$\operatorname{tr}_{R\otimes_k R'}(x\otimes y, z\otimes t) = g(x, z)g'(y, t). \quad (*)$$

Proof: Let V, W be vector spaces over k, and μ, ρ endomorphisms of V, W. Then $tr(\mu \otimes \rho) = tr(\mu)tr(\rho)$, which is clear from the block decomposition of the matrix $\mu \otimes \rho$. This gives the trace for any decomposable vector $r \otimes r' \in R \otimes_k R'$. The equation (*) is extended to the rest of $R \otimes_k R'$ because decomposable vectors generate $R \otimes_k R'$.

COROLLARY: Let $[K_1 : k]$, $[K_2 : k]$ be separable extensions. Then the Artinian *k*-algebra $K_1 \otimes_k K_2$ is semisimple, that is, isomorphic to a direct sum of fields.

Proof: The trace form on $K_1 \otimes_k K_2$ is non-degenerate, because $g \otimes g'$ is non-degenerate whenever g, g' is non-degenerate.

REMARK: In particular, if char k = 0, the product of finite extensions of the field k is always a direct sum of fields.

Tensor product of fields: examples and exercises

PROPOSITION: Let $P(t) \in k[t]$ be a polynomial over k, [K : k] an extension, and $K_1 = k[t]/P(t)$. Then $K_1 \otimes K \cong K[t]/P(t)$.

DEFINITION: Monic polynomial is a polynomial with leading coefficient 1.

COROLLARY: Let P(t) be a monic polynomial over k, [K : k] an extension, and $K_1 = k[t]/P(t)$. Assume that P(t) is a product of n distinct degree 1 monic polynomials over K. Then $K_1 \otimes K \cong K[t]/P(t) = K^{\oplus n}$.

Proof: Let $P = (t - a_1)(t - a_2)...(t - a_n)$. The natural map $K[t]/(P) \xrightarrow{\tau} \bigoplus_i K[t]/(t - a_i) = K^{\bigoplus n}K$ is injective, because any polynomial which vanishes in $a_1, a_2, ..., a_n$ is divisible by P. Since the spaces K[t]/(P) and $K[t]/(t - a_i) = K$ are *n*-dimensional, τ is an isomorphism.

REMARK: Surjectivity of τ is known as "Chinese remainders theorem".

EXERCISE: Let $P(t) \in \mathbb{Q}[t]$ be a polynomial which has exactly r real roots and 2s complex, non-real roots. **Prove that** $(\mathbb{Q}[t]/P) \otimes_{\mathbb{Q}} \mathbb{R} = \bigoplus_s \mathbb{C} \oplus \bigoplus_r \mathbb{R}$.

REMARK: Similarly, for any irreducible polynomial $P(t) \in k[t]$ which has an irreducible decomposition $P(t) = \prod_i P_i(t)$ in K[t], with all $P_i(t)$ coprime, one has $k[t]/(P) \otimes_k K \cong K[t]/P(t) \cong \bigoplus_i K[t]/P_i(t)$. Proof is the same.

Existence of algebraic closure

REMARK: Algebraic closure $[\overline{k} : k]$ is obtained by taking a succession of increasing algebraic extensions, adding to each the roots of irreducible polynomials, and using the Zorn lemma to prove that this will end up in a field which has no non-trivial extensions.

Tensor product of fields and algebraic closure

THEOREM: Let $[\overline{k} : k]$ be the algebraic closure of k, and [K : k] a separable finite extension. Then $K \otimes_k \overline{k} = \bigoplus \overline{k}$.

Proof. Step1: Consider a homomorphism $K \hookrightarrow \overline{k}$, acting as identity on k. Such a homomorphism exists by construction of the algebraic closure. Then

$$K \otimes_k \overline{k} = (K \otimes_k K) \otimes_K \overline{k}$$

by associativity of tensor product.

Step 2: Since [K : k] is separable, $K \otimes_k K = \bigoplus K_i$. There are at least 2 nontrivial summands in $\bigoplus K_i$, because for each irreducible polynomial $P(t) \in k[t]$ which has roots in K, one has $K \supset k[t]/(P)$, but $K \otimes_k k[t]/(P) = \bigoplus_i K[t]/(P_i)$, where $P_i(t) \in K[t]$ are irreducible components in the prime decomposition of P(t) over K, with $P(t) = \prod_i P_i(t)$. This gives non-trivial idempotents in $K \otimes_k k[t]/(P)$, hence in $K \otimes_k K \supset K \otimes_k (k[t]/(P))$.

Step 3: By associativity of tensor product,

$$K \otimes_k \overline{k} = (K \otimes_k K) \otimes_K \overline{k} = \bigoplus K_i \otimes_K \overline{k}. \quad (*)$$

Since $\dim_k K = \sum_i \dim_K K_i > \max_i \dim_K K_i$, the equation $K \otimes_k \overline{k} = \bigoplus \overline{k}$ follows from (*) and induction on $\dim_k K$.

Primitive element theorem

LEMMA: Let k be a field, and $A := \bigoplus_{i=1}^{n} k$. Then A contains only finitely many different k-algebras.

Proof: Let $e_1, ..., e_n$ be the units in the summands of A. Then any unipotent $a \in A$ is a sum of unipotents $a = \sum e_i a$, but $e_i a$ belongs to the *i*-th summand of A. Then $e_i a = 0$ or $e_i a = e_i$, because k contains only two unipotents. This implies that any k-algebra $A_i \subset A$ is generated by a unipotent a, which is sum of some a_i .

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there exists a primitive element $x \in K$, that is, an element which generates K.

Proof. Step1: Let \overline{k} be the algebraic closure of k. The number of intermediate fields $K \supset K' \supset k$ is finite. Indeed, all such fields correspond to \overline{k} -subalgebras in $K \otimes_k \overline{k}$, and there are finitely many k-subalgebras in $K \otimes_k \overline{k} = \bigoplus_i \overline{k}$.

Step 2: Take for x an element which does not belong to intermediate subfields $K \supseteq K' \supset k$. Such an element exists, because k is infinite, and K' belong to a finite set of subspaces of positive codimension. Then x is primitive, because it generates a subfield which is equal to K.

Galois extensions

DEFINITION: Let [K : k] be a finite extension. It is called a Galois extension if the algebra $K \otimes_k K$ is isomorphic to a direct sum of several copies of K.

EXERCISE: Let K = k[t]/(P) be a primitive, separable extension, with deg P(t) = n.

1. Prove that [K : k] is a Galois extension if and only if P(t) has n roots in K[t].

2. Consider an extension [K' : K] obtained by adding all roots of all irreducible components of $P(t) \in K[t]$. Prove that [K' : k] is a Galois extension.

Galois group

EXERCISE: Let [K : k] be a finite extension, and $G := \operatorname{Aut}_k K$ the group of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if and only if the set K^G of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group $Aut_k K$ is called **the Galois group of** [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and $Gal_k K$ its Galois group. Then the subgroups $H \subset Gal_k K$ are in bijective correspondence with the intermediate subfields $k \subset K^H \subset K$, with K^H obtained as the set of *H*-invariant elements of *K*.

EXERCISE: Prove that for any $q = p^n$ there exists a finite field \mathbb{F}_q of q elements. Prove that $[\mathbb{F}_q : \mathbb{F}_p]$ is a Galois extension. Prove that its Galois group is cyclic of order n, and generated by the Frobenius automorphism mapping x to x^p .