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Field extensions (reminder)

DEFINITION: An extension of a field k is a field K containing k. We
write “K is an extension of k” as [K : k].

DEFINITION: Let k ⊂ K be a field contained in a field. In this case, we say
that k is a subfield of K, and K is extension of k. An element x ∈ K is called
algebraic over K if x is a root of a non-zero polynomial with coefficients in
k. An element which is not algebraic is called transcendental.

THEOREM: A sum and a product of algebraic numbers is algebraic.

DEFINITION: A field extension K ⊃ k is called algebraic if all elements of
K are algebraic over k. A field k is called algebraically closed if all algebraic
extensions of k are trivial.

EXAMPLE: The field C is algebraically closed.

DEFINITION: In this lecture, k-algebra is a ring containg a field k, not
necessarily with unity. All k-algebras are tacitly assumed commutative.
Homomorphisms of k-algebras are k-linear map compatible with the mul-
tiplication.
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Irreducible polynomials (reminder)

THEOREM: The polynomial ring k[t] is factorial (admits the unique prime
decomposition).

Proof: See handout 3.

DEFINITION: A polynomial P (t) ∈ k[t] is irreducible if it is not a product
of polynomials P1, P2 ∈ k[t] of positive degree.

PROPOSITION: Let (P ) ⊂ k[t] be a principal ideal generated by the poly-
nomial P (t). Then the polynomial P (t) is irreducible if and only if the
quotient ring k[t]/(P ) is a field.

DEFINITION: Let P (t) ∈ k[t] be an irreducible polynomial. A field k[t]/(P ) is
called an extension of k obtained by adding a root of P (t). The extension
[k[t]/(P ) : k] is called primitive.

CLAIM: Let [K : k] be a finite extension. Then K can be obtained from
k by a finite chain of primitive extensions. In other words, there exists
a sequence of intermediate extensions [K = Kn : Kn−1 : Kn−2 : ... : K0 = k]
such that each [Ki : Ki−1] is primitive.
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Artinian algebras over a field (reminder)

DEFINITION: A commutative, associative k-algebra R is called Artinian

algebra if it is finite-dimensional as a vector space over k. Artinian algebra

is called semisimple if it has no non-zero nilpotents.

DEFINITION: Let R1, ..., Rn be k-algebras. Consider their direct sum ⊕Ri
with the natural (term by term) multiplication and addition. This algebra is

called direct sum of Ri, and denoted ⊕Ri.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct

sum of fields, and this decomposition is uniquely defined.
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The trace form (reminder)

DEFINITION: Trace tr(A) of a linear operator A ∈ Endk(kn) represented by

a matrix (aij) is
∑n
i=1 aii.

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear

form a, b−→ tr(ab), mapping a, b to the trace of endomorphism Lab ∈ EndkR,

where lab(x) = abx. This form is called the trace form, and denoted as

trk(ab).

REMARK: Let [K : k] be a finite field extension. As shown above, the trace

form trk(ab) is non-degenerate, unless trk is identically 0.
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Separable extensions (reminder)

DEFINITION: A field extension [K : k] is called separable if the trace form

trk(ab) is non-zero.

REMARK: If char k = 0, every field extension is separable, because

trk(1) = dimkK.

THEOREM: Let R be an Artinian algebra over k with non-degenerate trace

form. Then R is semisimple.

Proof: Since trk(ab) = 0 for any nilpotent a (indeed, the trace of a nilpotent

operator vanishes), the ring R contains no non-zero nilpotents.
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Tensor product of field extensions

LEMMA: Let R, R′ be Artinian k-algebras. Denote the corresponding trace
forms by g, g′. Consider the tensor product R ⊗k R′ with a natural structure
of Artinian k-algebra. Then the trace form on R⊗kR′ is equal g⊗ g′, that
is,

trR⊗kR′(x⊗ y, z ⊗ t) = g(x, z)g′(y, t). (∗)

Proof: Let V,W be vector spaces over k, and µ, ρ endomorphisms of V,W .
Then tr(µ ⊗ ρ) = tr(µ) tr(ρ), which is clear from the block decomposition of
the matrix µ ⊗ ρ. This gives the trace for any decomposable vector
r ⊗ r′ ∈ R⊗k R′. The equation (*) is extended to the rest of R⊗k R′ because
decomposable vectors generate R⊗k R′.

COROLLARY: Let [K1 : k], [K2 : k] be separable extensions. Then the
Artinian k-algebra K1 ⊗k K2 is semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on K1 ⊗k K2 is non-degenerate, because g ⊗ g′ is
non-degenerate whenever g, g′ is non-degenerate.

REMARK: In particular, if char k = 0, the product of finite extensions of
the field k is always a direct sum of fields.
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Tensor product of fields: examples and exercises

PROPOSITION: Let P (t) ∈ k[t] be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P (t). Then K1 ⊗K ∼= K[t]/P (t).

DEFINITION: Monic polynomial is a polynomial with leading coefficient 1.

COROLLARY: Let P (t) be a monic polynomial over k, [K : k] an extension,
and K1 = k[t]/P (t). Assume that P (t) is a product of n distinct degree 1
monic polynomials over K. Then K1 ⊗K ∼= K[t]/P (t) = K⊕n.

Proof: Let P = (t − a1)(t − a2)...(t − an). The natural map K[t]/(P )
τ−→⊕

iK[t]/(t − ai) = K⊕nK is injective, because any polynomial which vanishes
in a1, a2, ..., an is divisible by P . Since the spaces K[t]/(P ) and K[t]/(t−ai) = K
are n-dimensional, τ is an isomorphism.

REMARK: Surjectivity of τ is known as “Chinese remainders theorem”.

EXERCISE: Let P (t) ∈ Q[t] be a polynomial which has exactly r real roots
and 2s complex, non-real roots. Prove that (Q[t]/P )⊗Q R =

⊕
sC⊕

⊕
r R.

REMARK: Similarly, for any irreducible polynomial P (t) ∈ k[t] which
has an irreducible decomposition P (t) =

∏
i Pi(t) in K[t], with all Pi(t)

coprime, one has k[t]/(P ) ⊗k K ∼= K[t]/P (t) ∼=
⊕
iK[t]/Pi(t). Proof is the

same.
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Existence of algebraic closure

REMARK: Algebraic closure [k : k] is obtained by taking a succession

of increasing algebraic extensions, adding to each the roots of irreducible

polynomials, and using the Zorn lemma to prove that this will end up in a

field which has no non-trivial extensions.
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Tensor product of fields and algebraic closure

THEOREM: Let [k : k] be the algebraic closure of k, and [K : k] a separable
finite extension. Then K ⊗k k =

⊕
k.

Proof. Step1: Consider a homomorphism K ↪→ k, acting as identity on k.
Such a homomorphism exists by construction of the algebraic closure. Then

K ⊗k k = (K ⊗k K)⊗K k

by associativity of tensor product.

Step 2: Since [K : k] is separable, K⊗kK =
⊕
Ki. There are at least 2 non-

trivial summands in
⊕
Ki, because for each irreducible polynomial P (t) ∈ k[t]

which has roots in K, one has K ⊃ k[t]/(P ), but K⊗k k[t]/(P ) =
⊕
iK[t]/(Pi),

where Pi(t) ∈ K[t] are irreducible components in the prime decomposition
of P (t) over K, with P (t) =

∏
i Pi(t). This gives non-trivial idempotents in

K ⊗k k[t]/(P ), hence in K ⊗k K ⊃ K ⊗k (k[t]/(P )).

Step 3: By associativity of tensor product,

K ⊗k k = (K ⊗k K)⊗K k =
⊕

Ki ⊗K k. (∗)
Since dimkK =

∑
i dimKKi > maxi dimKKi, the equation K ⊗k k =

⊕
k

follows from (*) and induction on dimkK.
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Primitive element theorem

LEMMA: Let k be a field, and A :=
⊕n
i=1 k. Then A contains only finitely

many different k-algebras.

Proof: Let e1, ..., en be the units in the summands of A. Then any unipotent
a ∈ A is a sum of unipotents a =

∑
eia, but eia belongs to the i-th summand

of A. Then eia = 0 or eia = ei, because k contains only two unipotents. This
implies that any k-algebra Ai ⊂ A is generated by a unipotent a, which
is sum of some ai.

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element x ∈ K, that is, an element which generates K.

Proof. Step1: Let k be the algebraic closure of k. The number of in-
termediate fields K ⊃ K′ ⊃ k is finite. Indeed, all such fields correspond
to k-subalgebras in K ⊗k k, and there are finitely many k-subalgebras in
K ⊗k k because K ⊗k k =

⊕
i k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K ) K′ ⊃ k. Such an element exists, because k is infinite, and K′ belong
to a finite set of subspaces of positive codimension. Then x is primitive,
because it generates a subfield which is equal to K.
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Galois extensions

DEFINITION: Let [K : k] be a finite extension. It is called a Galois exten-

sion if the algebra K ⊗k K is isomorphic to a direct sum of several copies of

K.

EXERCISE: Let K = k[t]/(P ) be a primitive, separable extension, with

degP (t) = n.

1. Prove that [K : k] is a Galois extension if and only if P (t) has n roots

in K[t].

2. Consider an extension [K′ : K] obtained by adding all roots of all irreducible

components of P (t) ∈ K[t]. Prove that [K′ : k] is a Galois extension.
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Galois group

EXERCISE: Let [K : k] be a finite extension, and G := AutkK the group

of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if

and only if the set KG of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group AutkK is

called the Galois group of [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and GalkK its Galois group. Then the

subgroups H ⊂ GalkK are in bijective correspondence with the inter-

mediate subfields k ⊂ KH ⊂ K, with KH obtained as the set of H-invariant

elements of K.

EXERCISE: Prove that for any q = pn there exists a finite field Fq of q

elements. Prove that [Fq : Fp] is a Galois extension. Prove that its Galois

group is cyclic of order n, and generated by the Frobenius automorphism

mapping x to xp.
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