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Field extensions (reminder)

DEFINITION: An extension of a field k£ is a field K containing k. We
write “K is an extension of k" as [K : k].

DEFINITION: Let £ C K be a field contained in a field. In this case, we say
that k£ is a subfield of K, and K is extension of k. An element z € K is called
algebraic over K if x is a root of a non-zero polynomial with coefficients in
k. An element which is not algebraic is called transcendental.

THEOREM: A sum and a product of algebraic numbers is algebraic. =

DEFINITION: A field extension K D k is called algebraic if all elements of
K are algebraic over k. A field k is called algebraically closed if all algebraic
extensions of k are trivial.

EXAMPLE: The field C is algebraically closed.

DEFINITION: In this lecture, k-algebra is a ring containg a field k, not
necessarily with unity. All k-algebras are tacitly assumed commutative.
Homomorphisms of k-algebras are k-linear map compatible with the mul-
tiplication.
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Irreducible polynomials (reminder)

THEOREM: The polynomial ring k[t] is factorial (admits the unique prime
decomposition).

Proof: See handout 3. m

DEFINITION: A polynomial P(t) € k[t] is irreducible if it is not a product
of polynomials Py, P> € k[t] of positive degree.

PROPOSITION: Let (P) C k[t] be a principal ideal generated by the poly-
nomial P(t). Then the polynomial P(t) is irreducible if and only if the
quotient ring k[t]/(P) is a field. =

DEFINITION: Let P(t) € k[t] be an irreducible polynomial. A field k[t]/(P) is
called an extension of k¥ obtained by adding a root of P(t). The extension
[k[t]/(P) : k] is called primitive.

CLAIM: Let [K : k] be a finite extension. Then K can be obtained from
k by a finite chain of primitive extensions. In other words, there exists
a sequence of intermediate extensions [K = K, : K,,_1 : K,,_o : ... : Ko = K]
such that each [K; : K;_1] is primitive. m
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Artinian algebras over a field (reminder)

DEFINITION: A commutative, associative k-algebra R is called Artinian
algebra if it is finite-dimensional as a vector space over k. Artinian algebra
is called semisimple if it has no non-zero nilpotents.

DEFINITION: Let Rq,..., Ry be k-algebras. Consider their direct sum ®©R;
with the natural (term by term) multiplication and addition. This algebra is
called direct sum of R;, and denoted &R,;.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct
sum of fields, and this decomposition is uniquely defined. =
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The trace form (reminder)

DEFINITION: Trace tr(A) of a linear operator A € End, (k™) represented by
a matrix (CLZ]) IS Z?:l Aj;-

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear
form a,b — tr(ab), mapping a,b to the trace of endomorphism L, € End; R,
where [,;,(x) = abx. This form is called the trace form, and denoted as

trk(ab).

REMARK: Let [K : k] be a finite field extension. As shown above, the trace
form tr.(ab) is non-degenerate, unless tr; is identically O.
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Separable extensions (reminder)

DEFINITION: A field extension [K : k] is called separable if the trace form
tri.(ab) is non-zero.

REMARK: If chark = 0, every field extension is separable, because
trk(l) = dim; K.

THEOREM: Let R be an Artinian algebra over k£ with non-degenerate trace
form. Then R is semisimple.

Proof: Since trip(ab) = 0 for any nilpotent a (indeed, the trace of a nilpotent
operator vanishes), the ring R contains no non-zero nilpotents. =
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Tensor product of field extensions

LEMMA: Let R, R’ be Artinian k-algebras. Denote the corresponding trace
forms by g, ¢’. Consider the tensor product R ®;. R’ with a natural structure
of Artinian k-algebra. Then the trace form on R®;, R’ is equal g ® ¢/, that
IS,

trRey r (T @Y, 2 @ 1) = g(z,2)g'(y,1). (%)

Proof:. Let V,W be vector spaces over k, and u,p endomorphisms of V, WW.
Then tr(u ® p) = tr(w) tr(p), which is clear from the block decomposition of
the matrix u ® p. This gives the trace for any decomposable vector
r®r € R®;, R'. The equation (*) is extended to the rest of R ®; R’ because
decomposable vectors generate R®, R'. =

COROLLARY: Let [K7 : k], [Ko : k] be separable extensions. Then the
Artinian k-algebra K; ®;. Ko IS semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on Kj ®; K> is non-degenerate, because g ® ¢’ is
non-degenerate whenever g, ¢’ is non-degenerate. m

REMARK: In particular, if chark = 0, the product of finite extensions of
the field £ is always a direct sum of fields.
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Tensor product of fields: examples and exercises

PROPOSITION: Let P(t) € k[t] be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P(t). Then K1 @ K = K|[t]/P(t). =

DEFINITION: Monic polynomial iS a polynomial with leading coefficient 1.

COROLLARY: Let P(t) be a monic polynomial over k, [K : k] an extension,
and Ky = k[t]/P(t). Assume that P(t) is a product of n distinct degree 1
monic polynomials over K. Then K{ @ K £ K|[t]/P(t) = K",

Proof: Let P = (t — a1)(t — a5)...(t — an). The natural map K[t]/(P) —
@, K[t]/(t —a;) = KP"K is injective, because any polynomial which vanishes
inai,an,...,an is divisible by P. Since the spaces K|[t]/(P) and K|[t]/(t—a;) = K
are n-dimensional, 7 is an isomorphism. m

REMARK: Surjectivity of 7 is known as “Chinese remainders theorem”.

EXERCISE: Let P(t) € Q[t] be a polynomial which has exactly r real roots
and 2s complex, non-real roots. Prove that (Q[t]/P) ®gR = @®;C D D, R.

REMARK: Similarly, for any irreducible polynomial P(t) € k[t] which
has an irreducible decomposition P(t) = [[; P;(t) in KJ[t], with all P;(t)
coprime, one has k[t]/(P) ®, K = KJ[t]/P(t) = &, K[t]/P;(t). Proof is the
same.
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EXistence of algebraic closure

REMARK: Algebraic closure [k : k] is obtained by taking a succession
of increasing algebraic extensions, adding to each the roots of irreducible
polynomials, and using the Zorn lemma to prove that this will end up in a

field which has no non-trivial extensions.
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Tensor product of fields and algebraic closure

THEOREM: Let [k : k] be the algebraic closure of k, and [K : k] a separable
finite extension. Then K @, k = @ k.

Proof. Stepl: Consider a homomorphism K < k, acting as identity on k.
Such a homomorphism exists by construction of the algebraic closure. Then

by associativity of tensor product.

Step 2: Since [K : k] is separable, K®;, K = @ K;. There are at least 2 non-
trivial summands in @ K;, because for each irreducible polynomial P(t) € k[¢]
which has roots in K, one has K D k[t]/(P), but K®,k[t]/(P) = &; K[t]/(F;),
where P;(t) € KI[t] are irreducible components in the prime decomposition
of P(t) over K, with P(t) = []; P;(t). This gives non-trivial idempotents in
K ® k[t]/(P), hence in K ®;, K D K ® (k[t]/(P)).

Step 3: By associativity of tensor product,

Krk=(KQ,K)®x k=P K;Qx k. (*)
Since dim; K = Y,dimyg K; > max;dimg K;, the equation K . k = @k
follows from (*) and induction on dim, K. =
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Primitive element theorem

LEMMA: Let k be a field, and A :=@]_; k. Then A contains only finitely
many different k-algebras.

Proof: Let eq,...,en, be the units in the summands of A. Then any unipotent
a € Ais a sum of unipotents a = > e;a, but e;a belongs to the +-th summand
of A. Then e;a =0 or e;a = e;, because k contains only two unipotents. This
implies that any k-algebra A; C A is generated by a unipotent a, which
IS sum of some a;,. =

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element x € K, that is, an element which generates K.

Proof. Stepl: Let k be the algebraic closure of k. The number of in-
termediate fields K D K’ D k is finite. Indeed, all such fields correspond
to k-subalgebras in K ®; k, and there are finitely many k-subalgebras in
K @i k because K @k = @, k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K O K’ D k. Such an element exists, because k is infinite, and K’ belong
to a finite set of subspaces of positive codimension. Then z is primitive,
because it generates a subfield which is equal to K. m

11



Algebraic geometry I, lecture 10 M. Verbitsky

Galois extensions

DEFINITION: Let [K : k] be a finite extension. It is called a Galois exten-
sion if the algebra K ®; K is isomorphic to a direct sum of several copies of
K.

EXERCISE: Let K = k[t]/(P) be a primitive, separable extension, with
deg P(t) = n.

1. Prove that [K : k] is a Galois extension if and only if P(¢t) has n roots
in K[t].

2. Consider an extension [K' : K] obtained by adding all roots of all irreducible
components of P(t) € K[t]. Prove that [K’: k] is a Galois extension.
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Galois group

EXERCISE: Let [K : k] be a finite extension, and G := Autp K the group
of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if
and only if the set KG of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group Aut; K is
called the Galois group of [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and Gal, K its Galois group. Then the
subgroups H C Gal;, K are iIn bijective correspondence with the inter-
mediate subfields k ¢ K ¢ K, with K obtained as the set of H-invariant
elements of K.

EXERCISE: Prove that for any ¢ = p" there exists a finite field Fq of ¢
elements. Prove that [F, : Fp] is a Galois extension. Prove that its Galois
group is cyclic of order n, and generated by the Frobenius automorphism
mapping = to xP.
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