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Dominant morphisms (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology where

the closed subsets are algebraic subsets. Zariski closure of Z ⊂ M is an

intersection of all Zariski closed subsets containing Z.

EXERCISE: Prove that Zariski topology on C coincides with the cofinite

topology.

CAUTION: Zariski topology is non-Hausdorff.

DEFINITION: Dominant morphism is a morphism f : X −→ Y , such that

Y is a Zariski closure of f(X).

PROPOSITION: Let f : X −→ Y be a morphism of affine varieties. The

morphism f is dominant if and only if the homomorphism OY
f∗−→ OX

is injective.
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Field of fractions (reminder)

DEFINITION: Let S ⊂ R be a subset of R, closed under multiplication

and not containing 0. Localization of R in S is a ring, formally generated

by symbols a/F , where a ∈ R, F ∈ S, and relations a/F · b/G = ab/FG,

a/F + b/G = aG+bF
FG and aF k/F k+n = a/Fn.

DEFINITION: Let R be a ring without zero divisors, and S the set of all

non-zero elements in R. Field of fractions of R is a localization of R in S.

CLAIM: Let f : X −→ Y be a dominant morphism, where X is irreducible.

Then Y is also irreducible. Moreover, f∗ : OY −→OX can be extended to

a homomorphism of the fields of fractions. k(Y )−→ k(X).

DEFINITION: A dominant morphism of irreducible varieties is called bira-

tional if the corresponding homomorphism of the fields of fractions is an

isomorphism.
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Integral dependence (reminder)

DEFINITION: Let A ⊂ B be rings. An element b ∈ B is called integral

over A if the subring A[b] = A · 〈1, b, b2, b3, ...〉, generated by b and A, is finitely

generated as A-module.

DEFINITION: Monic polynomial is a polynomial with leading coefficient 1.

CLAIM: An element x ∈ B is integral over A ⊂ B if and only if the chain

of submodules

A ⊂ A · 〈1, x〉 ⊂ A · 〈1, x, x2〉 ⊂ A · 〈1, x, x2, x3〉 ⊂ ...

terminates.

COROLLARY: An element x ∈ B is integral over A ⊂ B ⇔ x is a root

of a monic polynomial with coefficients in A.

CLAIM: Let A ⊂ B be Noetherian rings. Then sum and product of ele-

ments which are integral over A is also integral.
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Integral closure (reminder)

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are

integral over A is called the integral closure of A in B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of

fractions. The set of all elements a ∈ k(A) which are integral over A is called

the integral closure of A. A ring A is called integrally closed if A coincides

with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called normal if all its irreducible com-

ponents Xi are disconnected, and the ring of functions OXi for each of these

irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism

Y −→X is an isomorphism.
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Factorial rings

DEFINITION: An element p of a ring R is called prime if the corresponding

principal ideal (p) is prime.

DEFINITION: A ring R without zero divisors is called factorial if any element

r ∈ R can be represented as a product of prime elements, r =
∏
i p
αi
i , and this

decomposition is unique up to invertible factors and permutation of pi.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.

Proof. Step1: Let u, v ∈ A, and u/v ∈ k(A) a root of a monic polynomial

P (t) ∈ A[t] of degree n. Then un is divisible by v in A.

Step 2: Let u/v ∈ k(A) be a root of a monic polynomial P (t) ∈ A[t]. Assume

that u, v are comprime. Since un is divisible by v, and they are coprime,

v is invertible by factoriality of A. Then u/v ∈ A.
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Gauss lemma

EXERCISE: Let R be a ring without zero divisors. Prove that the poly-

nomial ring R[t] has no zero divisors.

THEOREM: (“Gauss lemma”)

Let R be a factorial ring. Then the ring of polynomials R[t] is also

factorial.

Proof: See the next slide.

DEFINITION: Let R be a factorial ring. A polynomial P (t) ∈ R[t] is called

primitive if the greatest common divisor of its coefficients is 1.

Lemma 1: Let P1, P2 ∈ R[t] be primitive polynomials. Then their product

is also primitive.

Proof: Let p ∈ R be a prime. Since the polynomials P1, P2 are primitive,

they are non-zero modulo p. Since the ring R/(p) has no zero divisors, the

product P1P2 is non-zero in R/(p)[t], hence the greatest common divisor of

the coefficients of P1P2 is not divisible by p.
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Irreducibility of polynomials in R[t] and K[t]

Lemma 1: Let P1, P2 ∈ R[t] be primitive polynomials. Then their product

is also primitive.

Lemma 2: Let R be a factorial ring, and K its fraction field. Then any prim-

itive polynomial P ∈ R[t], which is irreducible in R[t], is also irreducible

in K[t].

Proof: Assume that P is decomposable in K[t]. Then rP = P1P2, where

P1, P2 ∈ R[t] and r ∈ R. Let s1, s2 be the greatest common divisors of the

coefficients of P1, P2. Then rP = s1s2P
′
1P
′
2, and P1, P2 are primitive. In this

case P1P2 is primitive (Lemma 1), hence the greatest common divisor of

the coefficients of s1s2P
′
1P
′
2 is s1s2. Since P is also primitive, the greatest

common divisor of the coefficients of rP = s1s2P
′
1P
′
2 is r. Then r

s1s2
is

invertible, and P is decomposable in R[t].
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Gauss lemma (proof)

THEOREM: (“Gauss lemma”)

Let R be a factorial ring. Then the ring of polynomials R[t] is also

factorial.

Proof: Let K be the fraction field of R. The ring K[t] is factorial, because

it is Euclidean (handout 3). Lemma 2 implies that a prime decomposition

of a primitive polynomial P (t) ∈ R[t] is uniquely determined by its prime

decomposition in K[t], hence it is unique. A non-primitive polynomial is

decomposed as a product of the greatest common divisor of its coefficients

and a primitive polynomial, hence its prime decomposition is also unique.

COROLLARY: The affine space Cn is a normal variety. Moreover, for any

variety X with factorial ring OX of regular functions, the product X×Cn

is also normal.

Proof: As we have shown previously, OX×Cn = OX⊗CC[t1, ..., tn] = OX[t1, ..., tn].

This ring is factorial by Gauss lemma.
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Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a

finite extension of its field of fractions, and B the integral closure of A in K.

Then B is finitely generated as an A-module.

Proof. Step1: For any a ∈ B, denote by Lb : K −→K the map of mul-

tiplication by b. Consider Lb as a k(A)-linear endomorphism of thefinite-

dimensional space K over k(A), and define the trace Tr(b) := Tr(Lb). Since

Tr(b) = d
dt det(tIdK − tLb)(0), for any b ∈ B integral over A, the trace of b is

integral over A.

Step 2: The bilinear symmetric form x, y −→ Tr(xy) is non-degenerate. In-

deed, Tr(xx−1) = dimk(A)K, and char k(A) = 0.

Step 3: Choose a basis e1, ..., en in the k(A)-vector space K. Let Pi(t) ∈
k(A)[t] be the minimal polynomials of ei. Write Pi(t) = Ait

ni +
∑
j<ni aijt

j,

where Ai, aij ∈ A. Then Aiei is a root of a monic polynomial P̃i(t) = tni +∑
j<niA

ni−jaijtj. This proves that the basis e1, ..., en in K : k(A) can be

chosen such that all ei are integral over A.
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Finiteness of integral closure (2)

Step 4: Let e∗i ∈ K be the dual basis with respect to the form Tr, with
Tr(e∗i ej) = δij. Consider the A-module M ⊂ K generated by e∗i . Clearly,
M := {b ∈ K | Tr(bei) ∈ A}.

Step 5: For any b ∈ B, the trace Tr(b) belongs to A, because b is integral over
A (Step 1). Then B ⊂ M , and B is a submodule of a finitely generated
A-module M. Since A is Noetherian, B is finitely generated as A-module.

COROLLARY: Let B be a ring over C. Assume that there exists an injective
ring morphism from A = C[x1, ..., xk] to B such that B is finitely generated
as an A-module. Then its integral closure B̂ is a finitely generated A-
module. In particlular, B̂ is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies.

DEFINITION: Let X be an affine variety, and Â the integral closure of its
ring of regular functions. Assume that Â is a finitely generated ring. Then
X̃ := Spec(Â) is called normalization of X.

REMARK: Using Noether’s normalization lemma, we shall prove that Â is
always finitely generated.
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