Geometria Algébrica I

lecture 12: normalization

Misha Verbitsky

IMPA, sala 232

September 28, 2018

Dominant morphisms (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology where the closed subsets are algebraic subsets. **Zariski closure** of $Z \subset M$ is an intersection of all Zariski closed subsets containing Z.

EXERCISE: Prove that **Zariski topology on** \mathbb{C} **coincides with the cofinite topology.**

CAUTION: Zariski topology is non-Hausdorff.

DEFINITION: Dominant morphism is a morphism $f : X \longrightarrow Y$, such that *Y* is a Zariski closure of f(X).

PROPOSITION: Let $f: X \longrightarrow Y$ be a morphism of affine varieties. The morphism f is dominant if and only if the homomorphism $\mathcal{O}_Y \xrightarrow{f^*} \mathcal{O}_X$ is injective.

Field of fractions (reminder)

DEFINITION: Let $S \subset R$ be a subset of R, closed under multiplication and not containing 0. Localization of R in S is a ring, formally generated by symbols a/F, where $a \in R$, $F \in S$, and relations $a/F \cdot b/G = ab/FG$, $a/F + b/G = \frac{aG+bF}{FG}$ and $aF^k/F^{k+n} = a/F^n$.

DEFINITION: Let R be a ring without zero divisors, and S the set of all non-zero elements in R. Field of fractions of R is a localization of R in S.

CLAIM: Let $f : X \longrightarrow Y$ be a dominant morphism, where X is irreducible. Then Y is also irreducible. Moreover, $f^* : \mathcal{O}_Y \longrightarrow \mathcal{O}_X$ can be extended to a homomorphism of the fields of fractions. $k(Y) \longrightarrow k(X)$.

DEFINITION: A dominant morphism of irreducible varieties is called **birational** if the corresponding homomorphism of the fields of fractions is an isomorphism.

Integral dependence (reminder)

DEFINITION: Let $A \subset B$ be rings. An element $b \in B$ is called **integral over** A if the subring $A[b] = A \cdot \langle 1, b, b^2, b^3, ... \rangle$, generated by b and A, is finitely generated as A-module.

DEFINITION: Monic polynomial is a polynomial with leading coefficient 1.

CLAIM: An element $x \in B$ is integral over $A \subset B$ if and only if the chain of submodules

$$A \subset A \cdot \langle \mathbf{1}, x \rangle \subset A \cdot \langle \mathbf{1}, x, x^2 \rangle \subset A \cdot \langle \mathbf{1}, x, x^2, x^3 \rangle \subset \dots$$

terminates.

COROLLARY: An element $x \in B$ is integral over $A \subset B \Leftrightarrow x$ is a root of a monic polynomial with coefficients in A.

CLAIM: Let $A \subset B$ be Noetherian rings. Then sum and product of elements which are integral over A is also integral.

Integral closure (reminder)

DEFINITION: Let $A \subset B$ be rings. The set of all elements in *B* which are integral over *A* is called **the integral closure of** *A* **in** *B*.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of fractions. The set of all elements $a \in k(A)$ which are integral over A is called **the integral closure of** A. A ring A is called **integrally closed** if A coincides with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called **normal** if all its irreducible components X_i are disconnected, and the ring of functions \mathcal{O}_{X_i} for each of these irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism $Y \longrightarrow X$ is an isomorphism.

Factorial rings

DEFINITION: An element p of a ring R is called **prime** if the corresponding principal ideal (p) is prime.

DEFINITION: A ring R without zero divisors is called **factorial** if any element $r \in R$ can be represented as a product of prime elements, $r = \prod_i p_i^{\alpha_i}$, and this decomposition is unique up to invertible factors and permutation of p_i .

PROPOSITION: Let *A* be a factorial ring. Then it is integrally closed.

Proof. Step1: Let $u, v \in A$, and $u/v \in k(A)$ a root of a monic polynomial $P(t) \in A[t]$ of degree n. Then u^n is divisible by v in A.

Step 2: Let $u/v \in k(A)$ be a root of a monic polynomial $P(t) \in A[t]$. Assume that u, v are comprime. Since u^n is divisible by v, and they are coprime, v is invertible by factoriality of A. Then $u/v \in A$.

Gauss lemma

EXERCISE: Let R be a ring without zero divisors. **Prove that the polynomial ring** R[t] has no zero divisors.

```
THEOREM: ("Gauss lemma")
```

Let R be a factorial ring. Then the ring of polynomials R[t] is also factorial.

Proof: See the next slide.

DEFINITION: Let *R* be a factorial ring. A polynomial $P(t) \in R[t]$ is called **primitive** if the greatest common divisor of its coefficients is 1.

Lemma 1: Let $P_1, P_2 \in R[t]$ be primitive polynomials. Then their product is also primitive.

Proof: Let $p \in R$ be a prime. Since the polynomials P_1, P_2 are primitive, they are non-zero modulo p. Since the ring R/(p) has no zero divisors, **the product** P_1P_2 **is non-zero in** R/(p)[t], hence the greatest common divisor of the coefficients of P_1P_2 is not divisible by p.

Irreducibility of polynomials in R[t] and K[t]

Lemma 1: Let $P_1, P_2 \in R[t]$ be primitive polynomials. Then their product is also primitive.

Lemma 2: Let *R* be a factorial ring, and *K* its fraction field. Then any primitive polynomial $P \in R[t]$, which is irreducible in R[t], is also irreducible in K[t].

Proof: Assume that *P* is decomposable in K[t]. Then $rP = P_1P_2$, where $P_1, P_2 \in R[t]$ and $r \in R$. Let s_1, s_2 be the greatest common divisors of the coefficients of P_1, P_2 . Then $rP = s_1s_2P'_1P'_2$, and P_1, P_2 are primitive. In this case P_1P_2 is primitive (Lemma 1), hence the greatest common divisor of the coefficients of $s_1s_2P'_1P'_2$ is s_1s_2 . Since *P* is also primitive, the greatest common divisor of the coefficients of the coefficients of $rP = s_1s_2P'_1P'_2$ is r. Then $\frac{r}{s_1s_2}$ is invertible, and *P* is decomposable in R[t].

Gauss lemma (proof)

THEOREM: ("Gauss lemma")

Let R be a factorial ring. Then the ring of polynomials R[t] is also factorial.

Proof: Let *K* be the fraction field of *R*. The ring K[t] is factorial, because it is Euclidean (handout 3). Lemma 2 implies that a prime decomposition of a primitive polynomial $P(t) \in R[t]$ is uniquely determined by its prime decomposition in K[t], hence it is unique. A non-primitive polynomial is decomposed as a product of the greatest common divisor of its coefficients and a primitive polynomial, hence its prime decomposition is also unique.

COROLLARY: The affine space \mathbb{C}^n is a normal variety. Moreover, for any variety X with factorial ring \mathcal{O}_X of regular functions, the product $X \times \mathbb{C}^n$ is also normal.

Proof: As we have shown previously, $\mathcal{O}_{X \times \mathbb{C}^n} = \mathcal{O}_X \otimes_{\mathbb{C}} \mathbb{C}[t_1, ..., t_n] = \mathcal{O}_X[t_1, ..., t_n].$ This ring is factorial by Gauss lemma.

Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a finite extension of its field of fractions, and B the integral closure of A in K. **Then** B is finitely generated as an A-module.

Proof. Step1: For any $a \in B$, denote by $L_b : K \longrightarrow K$ the map of multiplication by b. Consider L_b as a k(A)-linear endomorphism of thefinitedimensional space K over k(A), and define the trace $Tr(b) := Tr(L_b)$. Since $Tr(b) = \frac{d}{dt} \det(tId_K - tL_b)(0)$, for any $b \in B$ integral over A, the trace of b is integral over A.

Step 2: The bilinear symmetric form $x, y \longrightarrow \text{Tr}(xy)$ is non-degenerate. Indeed, $\text{Tr}(xx^{-1}) = \dim_{k(A)} K$, and $\operatorname{char} k(A) = 0$.

Step 3: Choose a basis $e_1, ..., e_n$ in the k(A)-vector space K. Let $P_i(t) \in k(A)[t]$ be the minimal polynomials of e_i . Write $P_i(t) = A_i t^{n_i} + \sum_{j < n_i} a_{ij} t^j$, where $A_i, a_{ij} \in A$. Then $A_i e_i$ is a root of a monic polynomial $\tilde{P}_i(t) = t^{n_i} + \sum_{j < n_i} A^{n_i - j} a_{ij} t^j$. This proves that the basis $e_1, ..., e_n$ in K : k(A) can be chosen such that all e_i are integral over A.

Finiteness of integral closure (2)

Step 4: Let $e_i^* \in K$ be the dual basis with respect to the form Tr, with $\operatorname{Tr}(e_i^*e_j) = \delta_{ij}$. Consider the A-module $M \subset K$ generated by e_i^* . Clearly, $M := \{b \in K \mid \operatorname{Tr}(be_i) \in A\}$.

Step 5: For any $b \in B$, the trace Tr(b) belongs to A, because b is integral over A (Step 1). Then $B \subset M$, and B is a submodule of a finitely generated A-module M. Since A is Noetherian, B is finitely generated as A-module.

COROLLARY: Let *B* be a ring over \mathbb{C} . Assume that there exists an injective ring morphism from $A = \mathbb{C}[x_1, ..., x_k]$ to *B* such that *B* is finitely generated as an *A*-module. Then its integral closure \hat{B} is a finitely generated *A*-module. In particlular, \hat{B} is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem applies. \blacksquare

DEFINITION: Let X be an affine variety, and \hat{A} the integral closure of its ring of regular functions. Assume that \hat{A} is a finitely generated ring. Then $\tilde{X} := \operatorname{Spec}(\hat{A})$ is called **normalization of** X.

REMARK: Using Noether's normalization lemma, we shall prove that \hat{A} is always finitely generated.