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Dominant morphisms (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology where
the closed subsets are algebraic subsets. Zariski closure of Z C M is an
intersection of all Zariski closed subsets containing Z.

EXERCISE: Prove that Zariski topology on C coincides with the cofinite
topology.

CAUTION: Zariski topology is nhon-HausdorfF.

DEFINITION: Dominant morphism is a morphism f: X — Y, such that
Y is a Zariski closure of f(X).

PROPOSITION: Let f: X —Y be a morphism of affine varieties. The

morphism f is dominant if and only if the homomorphism Oy f—> Ox

IS injective.
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Field of fractions (reminder)

DEFINITION: Let S C R be a subset of R, closed under multiplication
and not containing 0. Localization of R in S is a ring, formally generated
by symbols a/F, where a € R, FF € S, and relations a/F - b/G = ab/FG,

a/F +b/G = P and aFF/FF1 = q/F".

DEFINITION: Let R be a ring without zero divisors, and S the set of all
non-zero elements in R. Field of fractions of R is a localization of R in S.

CLAIM: Let f: X —Y be a dominant morphism, where X is irreducible.
Then Y is also irreducible. Moreover, f*: Oy — Ox can be extended to
a homomorphism of the fields of fractions. k(Y) — k(X).

DEFINITION: A dominant morphism of irreducible varieties is called bira-
tional if the corresponding homomorphism of the fields of fractions is an
iIsomorphism.
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Integral dependence (reminder)

DEFINITION: Let A C B be rings. An element b € B is called integral
over A if the subring A[b] = A-(1,b,b2,b3,...), generated by b and A, is finitely
generated as A-module.

DEFINITION: Monic polynomial iS a polynomial with leading coefficient 1.

CLAIM: An element z € B i1s integral over A C B if and only if the chain
of submodules

ACA- (1,2 CA-(1,z,2°) CA-(1,z,2°,2°) C ...

terminates.

COROLLARY: An element z € B is integral over A C B < z is a root
of a monic polynomial with coefficients in A. m

CLAIM: Let A C B be Noetherian rings. Then sum and product of ele-
ments which are integral over A is also integral.
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Integral closure (reminder)

DEFINITION: Let A C B be rings. The set of all elements in B which are
integral over A is called the integral closure of A in B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of
fractions. The set of all elements a € k(A) which are integral over A is called
the integral closure of A. A ring A is called integrally closed if A coincides
with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.
DEFINITION: An affine variety X is called normal if all its irreducible com-
ponents X; are disconnected, and the ring of functions @Xq; for each of these

irreducible components is integrally closed.

REMARK: Equivalently, X i1s normal if any finite, birational morphism
Y — X is an isomorphism.
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Factorial rings

DEFINITION: An element p of a ring R is called prime if the corresponding
principal ideal (p) is prime.

DEFINITION: A ring R without zero divisors is called factorial if any element
r € R can be represented as a product of prime elements, r = H,L-pio‘i, and this
decomposition is unique up to invertible factors and permutation of p;.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.

Proof. Stepl: Let u,v € A, and u/v € k(A) a root of a monic polynomial
P(t) € A[t] of degree n. Then «" is divisible by v in A.

Step 2: Let u/v € k(A) be a root of a monic polynomial P(t) € A[t]. Assume
that u,v are comprime. Since u" is divisible by v, and they are coprime,
v Is invertible by factoriality of A. Then u/v € A. =
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Gauss lemma

EXERCISE: Let R be a ring without zero divisors. Prove that the poly-
nomial ring R[t] has no zero divisors.

THEOREM: (“Gauss lemma”)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: See the next slide.

DEFINITION: Let R be a factorial ring. A polynomial P(t) € R[t] is called
primitive if the greatest common divisor of its coefficients is 1.

Lemma 1: Let Py, P> € R[t] be primitive polynomials. Then their product
IS also primitive.

Proof: Let p € R be a prime. Since the polynomials Pi, P> are primitive,
they are non-zero modulo p. Since the ring R/(p) has no zero divisors, the
product P; P> is non-zero in R/(p)[t], hence the greatest common divisor of
the coefficients of Py P> is not divisible by p. m

-
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Irreducibility of polynomials in R[t] and K|t]

Lemma 1: Let Py, P> € R[t] be primitive polynomials. Then their product
IS also primitive.

Lemma 2: Let R be a factorial ring, and K its fraction field. Then any prim-
itive polynomial P € R[t], which is irreducible in RJ[t], is also irreducible
in K[t].

Proof: Assume that P is decomposable in K[t]. Then rP = Py{P>, where
P1,P> € R[t] and » € R. Let s1,so be the greatest common divisors of the
coefficients of P1,P,. Then rP = s1spP]{P5, and Py, P> are primitive. In this
case PyP> is primitive (Lemma 1), hence the greatest common divisor of
the coefficients of S]_SQP{Pé IS s1s>. Since P is also primitive, the greatest
common divisor of the coefficients of rP = s1spP1P; is r. Then = is
invertible, and P is decomposable in R[{]. =
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Gauss lemma (proof)

THEOREM: (“Gauss lemma’)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: Let K be the fraction field of R. The ring KJ[t] is factorial, because
it is Euclidean (handout 3). Lemma 2 implies that a prime decomposition
of a primitive polynomial P(t) € R[t] is uniquely determined by its prime
decomposition in KJt], hence it is unique. A non-primitive polynomial is
decomposed as a product of the greatest common divisor of its coefficients
and a primitive polynomial, hence its prime decomposition is also unique. =

COROLLARY: The affine space C" is a normal variety. Moreover, for any
variety X with factorial ring Oy of regular functions, the product X x C"
IS also normal.

Proof: As we have shown previously, Oxwcn = Ox®QcClt1,...,tn] = Ox[t1, ..., tn].
This ring is factorial by Gauss lemma. =
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Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a
finite extension of its field of fractions, and B the integral closure of A in K.
Then B is finitely generated as an A-module.

Proof. Stepl: For any a € B, denote by L, : K — K the map of mul-
tiplication by b. Consider L, as a k(A)-linear endomorphism of thefinite-
dimensional space K over k(A), and define the trace Tr(b) := Tr(L;). Since
Tr(b) = % det(tldy —tLy)(0), for any b € B integral over A, the trace of b is
integral over A.

Step 2: The bilinear symmetric form z,y — Tr(xy) is non-degenerate. In-
deed, Tr(zz~1) = dimyc4y K, and chark(A) = 0.

Step 3: Choose a basis eq,...,en in the k(A)-vector space K. Let Pi(t) €
k(A)[t] be the minimal polynomials of e;. Write Pi(t) = A" + > ;. ait?,
where A;,a;; € A. Then A;e; is a root of a monic polynomial Pi(t) = t"i +
> j<n; A% a7, This proves that the basis eq,...,enp In K @ k(A) can be
chosen such that all ¢; are integral over A.
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Finiteness of integral closure (2)

Step 4: Let e,}k c K be the dual basis with respect to the form Tr, with
Tr(eje;) = §;;. Consider the A-module M C K generated by e;. Clearly,
M:={be K | Tr(be;) € A}.

Step 5: For any b € B, the trace Tr(b) belongs to A, because b is integral over
A (Step 1). Then B C M, and B is a submodule of a finitely generated
A-module M. Since A is Noetherian, B is finitely generated as A-module. m

COROLLARY: Let B be aring over C. Assume that there exists an injective
ring morphism from A = C[z1,...,x;] to B such that B is finitely generated
as an A-module. Then its integral closure B is a finitely generated A-
module. In particlular, B is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies. m

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Assume that A is a finitely generated ring. Then
X = Spec(A) is called normalization of X.

REMARK: Using Noether’'s normalization lemma, we shall prove that A is
always finitely generated.
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