Geometria Algébrica I

lecture 13: Nakayama lemma

Misha Verbitsky

IMPA, sala 232

October 1, 2018

Nakayama's lemma

QUESTION: Let $\mathfrak{a} \subset A$ be a non-trivial ideal in a Noetherian ring. How can we prove that $\bigcap_i \mathfrak{a}^i = 0$?

ANSWER: Nakayama's lemma!

REMARK: $\bigcap_i \mathfrak{a}^i = 0$ does not hold in the ring of smooth functions, which is non-Noetherian.

DEFINITION: An *A*-module *M* is called **torsion-free** if Tadashi Nakayama for any non-zero $a \in A$, and any non-zero $m \in M$, one has (1912-1964) $am \neq 0$.

Nakayama's lemma: Let A be a Noetherian ring, and M a finitely-generated torsion-free A-module. Then for any non-trivial ideal $\mathfrak{a} \subset A$, $\mathfrak{a}M = M$ implies M = 0.



M. Verbitsky

Nakayama's lemma (2)

Nakayama's lemma: Let A be a Noetherian ring, and M a finitely-generated torsion-free A-module. Then for any non-trivial ideal $\mathfrak{a} \subset A$, $\mathfrak{a}M = M$ implies M = 0.

Proof. Step1: For any finitely-generated A-module M over a Noetherian ring, $End_A(M)$ is finitely-generated as an A-module (prove it as an exercise).

Step 2: For any $\Phi \in \text{End}_A(M)$, consider the subalgebra $A[\Phi] \subset \text{End}_A(M)$, generated by Φ . Since $\text{End}_A(M)$ is finitely generated, $A[\Phi]$ is Noetherian. Therefore, Φ^n is expressed as a sum $\sum_{i=0}^{n-1} a_i \Phi^i$ for n sufficiently big. We obtain that Φ is a root of monic polynomial with coefficients in A.

Step 3: Let $\Phi \in \text{End}_A(M)$, $e_1, ..., e_n$ generators of M, and (a_{ij}) the matrix of Φ written in this basis (it is non-unique). Define characteristic polynomial of Φ as $\text{Chpoly}_{\Phi}(t) := \det(t \operatorname{Id} - A)$, where $A = (a_{ij})$.

Nakayama's lemma (2)

Step 3: Let $\Phi \in \text{End}_A(M)$, $e_1, ..., e_n$ generators of M, and (a_{ij}) the matrix of Φ written in this basis (it is non-unique). Define characteristic polynomial of Φ as $\text{Chpoly}_{\Phi}(t) := \det(t \operatorname{Id} - A)$, where $A = (a_{ij})$.

Step 4: Cayley-Hamilton theorem gives $Chpoly_{\Phi}(\Phi) = 0$ for any endomorphism of a finite-dimensional space over a field k. Then the same is true for a free module over any subring $R \subset k$, in particular, for a polynomial ring. However, any ring is a quotient of (possibly infinitely generated) polynomial ring, hence $Chpoly_{\Phi}(\Phi) = 0$ is true for any endomorphism of a free, finitely-generated A-module. Since any finitely-generated module is a quotient of a free module, we have $Chpoly_{\Phi}(\Phi) = 0$ for any $\Phi \in End_A(M)$.

Step 5: Let $Chpoly_{Id}(t) = t^n + \sum_{i=0}^{n-1} a_i t^i$ be the characteristic polynomial for the identity map $Id \in End_A(M)$. This polynomial depends on the choice of generators of M. Cayley-Hamilton give $Chpoly_{Id}(Id) = 0$, hence $(\sum a_i + 1)M$.

Step 6: Since $\mathfrak{a}M = M$, the identity map can be represented by a matrix (a_{ij}) with $a_{ij} \in \mathfrak{a}$. Step 5 gives $\sum a_i = -1$, which is impossible, unless M = 0.

Krull theorem

THEOREM: (Krull theorem)

Let $\mathfrak{a} \subset A$ be an ideal in a Noetherian ring without zero divisors. Then $\cap \mathfrak{a}^n = 0$.

Proof: Let $M := \bigcap \mathfrak{a}^n$. This is a torsion-free module satisfying $\mathfrak{a}M = M$. Nakayama's lemma implies M = 0.

REMARK: A version of Nakayama's lemma is valid for all *A*-modules, regardless of torsion.

THEOREM: (Nakayama's lemma)

Let A be a Noetherian ring, and M a finitely-generated A-module. Then for any non-trivial ideal $a \in A$, aM = M implies that (1 + a)M = 0, for some $a \in a$.

Proof: See Step 5 on the previous slide. ■

Local rings

DEFINITION: A ring A is called **local** if it has only one maximal ideal.

DEFINITION: Let $\mathfrak{p} \subset A$ be a prime ideal, and $S \subset A$ its complement. Localization of A in \mathfrak{p} is $A[S^{-1}]$.

CLAIM: Localization of A in p is local.

Proof: Anu $x \in A \setminus \mathfrak{p}$ is invertible, hence \mathfrak{p} is maximal ideal, containing all ideals in A.

CLAIM: Let *A* be a Noetherian local ring, \mathfrak{m} its maximal ideal, and $\Phi \in \operatorname{Hom}_A(M_1, M_2)$ a homomorphism of finitely-generated *A*-modules. Suppose that Φ induces a surjective map $\operatorname{Hom}_{A/\mathfrak{m}} \operatorname{Hom}_A(M_1/\mathfrak{m}M_1, M_2/\mathfrak{m}M_2)$. Then Φ is surjective.

Proof: Let $M_3 := \operatorname{coker} \Phi$. For any $x \in M_2$, one has $x \in \operatorname{im} \Phi \mod \mathfrak{m}$. Therefore, $\mathfrak{m}M_3 = M_3$. Then Nakayama's lemma implies that $1 + aM_3 = 0$, for some $a \in \mathfrak{m}$. Since 1 + a is invertible, this implies that $M_3 = 0$.

Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and $R \longrightarrow R'$ a ring homomorphism. Then $M \otimes_R R'$ is a finitely generated R'-module. Indeed, if M is generated by $x_1, ..., x_n$, then $M \otimes_R R'$ is generated by $x_1, ..., x_n$.

DEFINITION: A morphism $X \longrightarrow Y$ of affine varieties is called **finite** if the ring \mathcal{O}_X is a finitely generated module over \mathcal{O}_Y . In this case, \mathcal{O}_X is called **an integral extension** of \mathcal{O}_Y .

THEOREM: Let $X \xrightarrow{f} Y$ be a finite morphism. Then for any point $y \in Y$, **the preimage** $f^{-1}(y)$ **is finite.**

Proof. Step1: Since \mathcal{O}_X is finite generated as an \mathcal{O}_Y -module, the ring $R := \mathcal{O}_X \otimes_{\mathcal{O}_Y} (\mathcal{O}_Y/\mathfrak{m}_y)$ is finitely generated as an $\mathcal{O}_Y/\mathfrak{m}_y$ -module. Since $\mathcal{O}_Y/\mathfrak{m}_y = \mathbb{C}$, we obtain that R is an Artinian algebra over \mathbb{C} .

Step 2: Let $N \subset R$ be a nilradical. As shown in Lecture 9, Spec(R/N) is a finite set.

Step 3: As shown in Lecture 8, $\operatorname{Spec}(R/N) = f^{-1}(y)$.

Dominant, finite morphisms are surjective

THEOREM: Let $f : X \longrightarrow Y$ be a finite, dominant morphism of affine varieties. Then f is surjective.

Proof. Step1: Restricting to irreducible components, we can always assume that Y, and hence X is irreducible. Let $A = \mathcal{O}_Y$, $B = \mathcal{O}_X$. We can consider A as a subring of B, which has no zero divisors, and assume that B is finitely generated as A-module.

Step 2: Let $\mathfrak{m}_y \subset A$ be a maximal ideal corresponding to $y \in Y$. Nakayama's lemma implies that $\mathfrak{m}_y B \neq B$.

Step 3: $f^{-1}(y) = \text{Spec}(B \otimes_A A/\mathfrak{m}_y) = \text{Spec}(B/\mathfrak{m}_y B)$. Since this is non-zero ring, the set $f^{-1}(y)$ is non-empty.