Geometria Algébrica I

lecture 14: Finite quotients and branched covers

Misha Verbitsky

IMPA, sala 232

October 5, 2018

Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and $R \longrightarrow R'$ a ring homomorphism. Then $M \otimes_R R'$ is a finitely generated R'-module. Indeed, if M is generated by $x_1, ..., x_n$, then $M \otimes_R R'$ is generated by $x_1, ..., x_n$.

DEFINITION: A morphism $X \longrightarrow Y$ of affine varieties is called **finite** if the ring \mathcal{O}_X is a finitely generated module over \mathcal{O}_Y . In this case, \mathcal{O}_X is called **an integral extension** of \mathcal{O}_Y .

THEOREM: Let $X \xrightarrow{f} Y$ be a finite morphism. Then for any point $y \in Y$, **the preimage** $f^{-1}(y)$ **is finite.**

Proof. Step 1: Since \mathcal{O}_X is finite generated as an \mathcal{O}_Y -module, the ring $R := \mathcal{O}_X \otimes_{\mathcal{O}_Y} (\mathcal{O}_Y/\mathfrak{m}_y)$ is finitely generated as an $\mathcal{O}_Y/\mathfrak{m}_y$ -module. Since $\mathcal{O}_Y/\mathfrak{m}_y = \mathbb{C}$, we obtain that R is an Artinian algebra over \mathbb{C} .

Step 2: Let $N \subset R$ be a nilradical. As shown in Lecture 9, Spec(R/N) is a finite set.

Step 3: As shown in Lecture 8, $\operatorname{Spec}(R/N) = f^{-1}(y)$.

Dominant, finite morphisms are surjective (reminder)

THEOREM: Let $f : X \longrightarrow Y$ be a finite, dominant morphism of affine varieties. Then f is surjective.

Proof. Step 1: Restricting to irreducible components, we can always assume that Y, and hence X is irreducible. Let $A = \mathcal{O}_Y$, $B = \mathcal{O}_X$. We can consider A as a subring of B, which has no zero divisors, and assume that B is finitely generated as A-module.

Step 2: Let $\mathfrak{m}_y \subset A$ be a maximal ideal corresponding to $y \in Y$. Nakayama's lemma implies that $\mathfrak{m}_y B \neq B$.

Step 3: $f^{-1}(y) = \text{Spec}(B \otimes_A A/\mathfrak{m}_y) = \text{Spec}(B/\mathfrak{m}_y B)$. Since this is non-zero ring, the set $f^{-1}(y)$ is non-empty.

Finite quotients

CLAIM: Let R be a Noetherian ring without zero divisors, G a group acting by automorphisms on R, and R^G the ring of G-invariants. Then φ : Spec $R \longrightarrow \operatorname{Spec} R^G$ is a finite, dominant morphism.

Proof. Step 1: For any $g \in G$, consider the corresponding polynomial map $P_g : R \longrightarrow R$, and let $r \in R$. The polynomial $P(t) := \prod_{g \in G} (t - g(r))$ has *G*-invariant coefficients for any $r \in R$, hence $P(t) \in R^G[t]$

Step 2: The morphism φ is finite because each $r \in R$ satisfies the equation P(r) = 0, where $P(t) = \prod_{g \in G} (t - g(r))$. It is dominant, because $R^G \subset R$.

DEFINITION: Let G be a finite group acting on an affine variety X by automorphisms. The quotient space X/G is $\text{Spec}(\mathcal{O}_X^G)$.

EXAMPLE: $\mathbb{C}^2/\{\pm 1\} = \mathbb{C}[x^2, y^2, xy] = \mathbb{C}[t_1, t_2, t_3]/(t_1t_2 = t_3^2)$. Indeed, $\mathbb{C}^2/\{\pm 1\} = \operatorname{Spec} A$, where $A = \mathbb{C}[x, y]^{\{\pm 1\}}$: A is the ring of even polynomials.

EXAMPLE: Let $G = \mathbb{Z}/n\mathbb{Z}$ act on \mathbb{C} by multiplication by a primitive root $\sqrt[n]{1}$. Then $\mathbb{C}/G = \operatorname{Spec}(\mathbb{C}[t]^G) = \operatorname{Spec}(\mathbb{C}[t^n])$, hence **the quotient space** \mathbb{C}/G is isomorphic to \mathbb{C} .

Finite quotients (2)

THEOREM: Consider the natural morphism $\operatorname{Spec} R \xrightarrow{\varphi} \operatorname{Spec} R^G$. Then $\varphi(x) = \varphi(y)$ if and only ig $x \in G \cdot y$, that is, the set of points in $\operatorname{Spec} R^G$ is identified with the space of *G*-orbits.

Proof. Step 1: If two maximal ideals of R are G-conjugated, their intersections of $R^G \subset R$ are equal. This gives $\varphi(gx) = \varphi(x)$: each G-orbit is mapped to one point. It remains to show that the preimage of any point is exactly one G-orbit.

Step 2: For any ideal $\mathfrak{m} \subset R^G$, one has $(\mathfrak{m}R)^G = \mathfrak{m}$ (lecture 6). Then $A^G = R^G/\mathfrak{m}$, where $A := R \otimes_{R^G} (R^G/\mathfrak{m}) = R/\mathfrak{m}R$.

Step 3: Let \mathfrak{m} be the maximal ideal of $y \in \operatorname{Spec} R^G$, and N the nilradical of $A := R/\mathfrak{m}R$. Since $\varphi^{-1}(y) = \operatorname{Spec}(A/N)$, points of $\varphi^{-1}(y)$ are maximal ideals of the ring A/N.

Step 4: A semisimple Artinian \mathbb{C} -algebra A/N is a direct sum of finite extensions of \mathbb{C} , which are all isomorphic to \mathbb{C} , giving $A/N = \bigoplus \mathbb{C}$. Since $A^G = \mathbb{C}$ (Step 2), the group G acts on summands of $A/N = \bigoplus \mathbb{C}$ transitively. Therefore, all points of $\varphi^{-1}(y)$ belong to the same G-orbit.

Transcendental extensions

CLAIM: Let $[k : \mathbb{C}]$ be an extension of \mathbb{C} , and [K : k] an extension of k generated over k by $z \in K$. Then either z is transcendental, and K is isomorphic to the field of rational functions k(z), or z is algebraic, and [K : k] is a finite extension.

Proof: Indeed, either z is a root of polynomial, and then [K : k] is finite, or K contains the polynomial ring k[z], and then K contains k(z).

LEMMA: Let [K : k] be a finite extension, and [K(t) : k(t)] the corresponding extension of rational functions. Then [K(t) : k(t)] is also finite.

Proof: Primitive element theorem gives $K = k[\alpha]$, where α is an algebraic element, which is a root of a polynomial P(z). Using the isomorphism $A/J \otimes_A B = B/JB$ (Lecture 7), we obtain

$$K(t) = K \otimes_k k(t) = \frac{k[z]}{(P(z))} \otimes_k k(t) = k(t)[z]/(P(z)).$$

EXERCISE: Find a proof which does not use existence of a primitive element.

Transcendence basis

DEFINITION: Let $k(t_1, ..., t_n)$ be the field of rational functions of several variables, that is, the fraction field for the polynomial ring $k[t_1, ..., t_n]$. Then the extension $[k(t_1, ..., t_n) : k]$ is called **a purely transcendental extension** of k, and $t_1, ..., t_n$ are called **algebraically independent**.

REMARK: Clearly, $t_1, ..., t_n$ are algebraically independent if and only if there are no alrebraic relations of form $P(t_1, ..., t_n) = 0$, where P is a polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K : k] is a collection $z_1, ..., z_n \in K$ generating a purely trascendental extension $K' := k(z_1, ..., z_n)$ such that [K : K'] is an algebraic extension.

Transcendence basis in regular functions

Theorem 1: Let k(X) be the field of rational functions on an irreducible affine variety X, with \mathcal{O}_X generated by $t_1, ..., t_n$. Let $S \subset \{t_1, ..., t_n\}$ be a maximal algebraically independent subset. Then the extension $[k(X) : k(t_1, ..., t_k)]$ is finite.

Proof: Since \mathcal{O}_K is finitely generated, we can use induction by the number of generators $t_1, ..., t_n$ of \mathcal{O}_X . Let $A \subset \mathcal{O}_X$ be a subring generated by $t_1, ..., t_{n-1}$, and $t_1, ..., t_k$ a transcendence basis on k(A).

If t_n is algebraic over k(A), then [k(X) : k(A)] is finite; since $[k(A) : k(t_1, ..., t_k)]$ is finite, this implies that $[k(X) : k(t_1, ..., t_k)]$ is finite.

If t_n is transcendental over k(A), we obtain $k(X) = k(A)(t_n)$, and $[k(X)] = k(A)(t_n)$ is finite over $k(t_1, ..., t_k, t_n)$ by the lemma above.

Transcendence basis and dominant morphisms

PROPOSITION: Let $X \subset \mathbb{C}^n$ be an irreducible affine manifold, $t_1, ..., t_n$ coordinates on \mathbb{C}^n , and $\Pi_k : X \longrightarrow \mathbb{C}^k$ the projection to the first k coordinates. **Then the following are equivalent.**

(i) Π_k is dominant and the extension $[k(X) : k(t_1, ..., t_k)]$ is finite.

(ii) $t_1, ..., t_k$ is transcendence basis in k(X).

Proof: Theorem 1 implies that $[k(X) : k(t_1, ..., t_k)]$ is finite whenever $t_1, ..., t_k$ is the transcendence basis. Therefore, (ii) \Rightarrow (i). Converse is clear, because k(X) is algebraic over $k(t_1, ..., t_k) \subset k(X)$, hence $t_1, ..., t_k$ is a maximal algebraically independent subset.

REMARK: We want to find a projection Π_k : $X \longrightarrow \mathbb{C}^k$ which is finite, for any given irreducible affine variety X.

When the coordinate projection is finite

REMARK: Let $X \subset \mathbb{C}^n$ be an irreducible affine subvariety, z_i coordinates on \mathbb{C}^n , and $z_1, ..., z_k$ transcendence basis on k(X). The projection map \prod_{n-1} is finite if and only if $P(z_n) = 0$ in \mathcal{O}_X , for some monic polynomial $P(t) \in \mathcal{O}_X[t]$ with coefficients which are polynomial in $z_1, ..., z_{n-1}$. Indeed, this is precisely what is needed for \mathcal{O}_X to be a finitely generated module over its subalgebra $A = \mathcal{O}_{P_{n-1}(X)}$ generated by $z_1, ..., z_{n-1}$ considered as regular functions on X. Notice that a non-zero polynomial with $P(t) \in A[t]$ with $P(z_n) = 0$ always extists, unless n = k and $X = \mathbb{C}^n$, but it is not necessarily monic.

CLAIM: In these assumptions, there exists a linear coordinate change $z'_i := z_i + \lambda_i z_n$, such that z_n is finite over $z'_1, ..., z'_k$.

Proof. Step 1: Let $P(z_1, ..., z_k, t)$ be a non-zero polynomial such that $P(z_1, ..., z_k, z_n) = 0$ in \mathcal{O}_X . Such a polynomial exists because $z_1, ..., z_k$ is a transcendence basis in k(X), and z_n is algebraic over $z_1, ..., z_k \in \mathcal{O}_X$. Let $F(z_1, ..., z_k, z_n)$ be a homogeneous component of maximal degree in $P(z_1, ..., z_k, z_n)$. We choose P to be of minimal possible degree in $z_1, ..., z_k, z_n$.

When the coordinate projection is finite (2)

CLAIM: In these assumptions, there exists a linear coordinate change $z'_i := z_i + \lambda_i z_n$, such that z_n is finite over $z'_1, ..., z'_k$.

Proof. Step 1: Let $P(z_1, ..., z_k, t)$ be a non-zero polynomial such that $P(z_1, ..., z_k, z_n) = 0$ in \mathcal{O}_X . Such a polynomial exists because $z_1, ..., z_k$ is a transcendence basis in k(X), and z_n is algebraic over $z_1, ..., z_k \in \mathcal{O}_X$. Let $F(z_1, ..., z_k, z_n)$ be a homogeneous component of maximal degree in $P(z_1, ..., z_k, z_n)$. We choose P to be of minimal possible degree in $z_1, ..., z_k, z_n$.

Step 2: Consider a polynomial

 $Q(z'_1, ..., z'_k, z_n) := F(z_1 + \lambda_1 z_n, ..., z_k + \lambda_k z_n, z_n).$

Then $Q(0, 0, ..., 0, 1) = F(\lambda_1, ..., \lambda_k, 1)$ is non-zero on X for general λ_i . Indeed, if $F(\lambda_1, ..., \lambda_k, 1)$ is identically 0 for all λ_i , the top degree homogeneous term in $P(z_1, ..., z_k, z_n)$ vanishes on X, and we can replace $P(z_1, ..., z_k, z_n)$ by a smaller degree polynomial.

Step 3: The degree *d* polynomial $Q(z'_1, ..., z'_k, t)$ is monic in *t*, because its leading term t^d has non-zero coefficient by Step 2.

Noether's normalization lemma, first version

REMARK: Let $A \subset B \subset C$ be ring without zero divisors, C is finitely generated as B-module, and B as an A-module. Then C is finitely generated as an A-module.

REMARK: We have proven that the projection Π_{n-1} : $X \longrightarrow \mathbb{C}^{n-1}$ to coordinates $z'_1, ..., z'_k, z_{k+1}, ..., z_{n-1}$ is finite. Using this remark and induction by n, we obtain

COROLLARY: (Noether's normalization lemma, first version)

Let $X \subset \mathbb{C}^n$ be an irreducible affine subvariety. Then there exists a linear coordinate change such that the projection of X to the first k coordinates gives a finite map $X \longrightarrow \mathbb{C}^k$.