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Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and R — R’ a ring
homomorphism. Then M ®@p R’ is a finitely generated R’-module. Indeed,
if M is generated by z1,...,z,, then M ®p R’ is generated by z1, ..., zn.

DEFINITION: A morphism X — Y of affine varieties is called finite if the
ring Ox is a finitely generated module over Oy . In this case, Oy is called an
integral extension of Oy .

THEOREM: Let X i> Y be a finite morphism. Then for any point y € Y,

the preimage f—1(y) is finite.

Proof. Step 1: Since Oy is finite generated as an Oy-module, the ring R :=
Ox ®, (Oy/my) is finitely generated as an Oy /my-module. Since Oy /my = C,
we obtain that R is an Artinian algebra over C.

Step 2: Let N C R be a nilradical. As shown in Lecture 9, Spec(R/N) is a
finite set.

Step 3: As shown in Lecture 8, Spec(R/N) = f~1(y). =
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Dominant, finite morphisms are surjective (reminder)

THEOREM: Let f: X —Y be a finite, dominant morphism of affine
varieties. Then f is surjective.

Proof. Step 1: Restricting to irreducible components, we can always assume
that Y, and hence X is irreducible. Let A = Oy, B = Ox. We can consider
A as a subring of B, which has no zero divisors, and assume that B is finitely
generated as A-module.

Step 2: Let my C A be a maximal ideal corresponding to y € Y. Nakayama’s
lemma implies that myB # B.

Step 3: f~1(y) = Spec(B®4 A/my) = Spec(B/myB). Since this is non-zero
ring, the set f—1(y) is non-empty. =
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Finite quotients

CLAIM: Let R be a Noetherian ring without zero divisors, G a group act-
ing by automorphisms on R, and RG the ring of G-invariants. Then o :
Spec R — Spec RC is a finite, dominant morphism.

Proof. Step 1: For any g € G, consider the corresponding polynomial map
Pyt R— R, and let r € R. The polynomial P(t) := [[;eq(t — g(r)) has
G-invariant coefficients for any r € R, hence P(t) € RG[t]

Step 2: The morphism ¢ is finite because each r € R satisfies the equation
P(r) =0, where P(t) = [[;eq(t —g(r)). It is dominant, because RECR. m

DEFINITION: Let G be a finite group acting on an affine variety X by
automorphisms. The quotient space X/G is Spec(©%).

EXAMPLE: C?/{£1} = C[z?, y?, zy] = (C[tl,tg,t3]/(t1t2 = t2). Indeed,
C2/{+1} = Spec A, where A = C[z, y]'*1}: 4 is the ring of even polynomi-
als.

EXAMPLE: Let G = Z/nZ act on C by multiplication by a primitive root V1.
Then C/G = Spec(C[t]¢) = Spec(C[t"]), hence the quotient space C/G is
iIsomorphic to C.
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Finite quotients (2)

THEOREM: Consider the natural morphism Spec R LN SpecRG. Then
o(z) = p(y) if and only ig =z € G -y, that is, the set of points in Spec RC is
identified with the space of G-orbits.

Proof. Step 1: If two maximal ideals of R are G-conjugated, their inter-
sections of RE C R are equal. This gives ¢(gz) = o(z): each G-orbit is
mapped to one point. It remains to show that the preimage of any point
IS exactly one G-orbit.

Step 2: For any ideal m C R%, one has (mR)® = m (lecture 6). Then
AY = RY/m, where A := R®pc (RY/m) = R/mR.

Step 3: Let m be the maximal ideal of y € Spec R¢, and N the nilradical
of A:= R/mR. Since ¢ 1(y) = Spec(A/N), points of »~1(y) are maximal
ideals of the ring A/N.

Step 4: A semisimple Artinian C-algebra A/N is a direct sum of finite exten-
sions of C, which are all isomorphic to C, giving A/N = @ C. Since AG = C
(Step 2), the group G acts on summands of A/N = @ C transitively.
Therefore, all points of v~ 1(y) belong to the same G-orbit. =
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Transcendental extensions

CLAIM: Let [k : C] be an extension of C, and [K : k] an extension of k
generated over k£ by z € K. Then either z is transcendental, and K is
isomorphic to the field of rational functions k(z), or z is algebraic, amd
[K : k] is a finite extension.

Proof: Indeed, either z is a root of polynomial, and then [K : k] is finite, or
K contains the polynomial ring k[z], and then K contains k(z). =

LEMMA: Let [K : k] be a finite extension, and [K (t) : k(t)] the correspoinding
extension of rational functions. Then [K(t) : k(t)] is also finite.

Proof: Primitive element theorem gives K = k[«a], where « is an algebraic
element, which is a root of a polynomial P(z). Using the isomorphism A/J® 4
B = B/JB (Lecture 7), we obtain

(P(z))

K(t) = K ® k(1) = ® k(t) = k() [z]/(P(2)).

EXERCISE: Find a proof which does not use existence of a primitive element.
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Transcendence basis

DEFINITION: Let k(t1,...,tn) be the field of rational functions of several
variables, that is, the fraction field for the polynomial ring k[tq1,...,tn]. Then
the extension [k(t1,...,tn) : k] is called a purely transcendental extension
of k£, and tq,...,ty, are called algebraically independent.

REMARK: Clearly, t1,...,t, are algebraically independent if and only if
there are no alrebraic relations of form P(t1,...,tn,) = 0, where P is a
polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K : k] is a collection
21,...,zn € K generating a purely trascendental extension K’ := k(z1,...,2n)
such that [K : K'] is an algebraic extension.
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Transcendence basis in regular functions

Theorem 1: Let £(X) be the field of rational functions on an irreducible affine
variety X, with Oy generated by tq,...,tn. Let S C {t1,...,tn} be a maximal
algebraically independent subset. Then the extension [k(X) : k(tq,...,t.)] is
finite.

Proof: Since O is finitely generated, we can use induction by the number of
generators tq,...,tn, Of Ox. Let A C Ox be a subring generated by tq1,...,t,_1,
and t1,...,t;, a transcendence basis on k(A).

If t,, is algebraic over k(A), then [k(X) : k(A)] is finite; since [k(A) : k(tq1,...,t)]
is finite, this implies that [k(X) : k(tq1,...,t;)] is finite.

If ¢, is transcendental over k(A), we obtain k(X) = k(A)(tn), and [k(X)] =
k(A)(tn) is finite over k(t1,...,tx, tn) by the lemma above. =
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Transcendence basis and dominant morphisms

PROPOSITION: Let X C C™ be an irreducible affine manifold, tq,...,tn
coordinateson C"?, and N : X — Ck the projection to the first £k coordinates.
Then the following are equivalent.

(i) N, is dominant and the extension [k(X) : k(t1,...,t;)] Is finite.

(ii) tq1,...,t; is transcendence basis in k£(X).

Proof: Theorem 1 implies that [k(X) : k(t1,...,t;)] is finite whenever tq, ..., t;
is the transcendence basis. Therefore, (ii) = (i). Converse is clear, be-

cause k(X) is algebraic over k(tq1,...,tr) C k(X), hence t1,...,t iS @ maximal
algebraically independent subset. m

REMARK: We want to find a projection M, : X — CF which is finite,
for any given irreducible affine variety X.
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When the coordinate projection is finite

REMARK: Let X C C"™ be an irreducible affine subvariety, z; coordinates on
C", and z,..., 2, transcendence basis on k(X). The projection map I1,_1
Is finite if and only if P(z;,) = 0 in Oy, for some monic polynomial
P(t) € Ox[t] with coefficients which are polynomial in zq,...,z,_1. Indeed,
this is precisely what is needed for ©Ox to be a finitely generated module over
its subalgebra A = @Pn—l(X) generated by z1,...,z,_1 considered as regular
functions on X. Notice that a non-zero polynomial with P(t) € A[t] with
P(zn) = 0 always extists, unless n = k£ and X = C", but it is not necessarily
monic.

CLAIM: In these assumptions, there exists a linear coordinate change

z; = z; + Aizn, sSuch that z, is finite over 2/, ..., 2.

Proof. Step 1: Let P(z1,...,z1,t) be a non-zero polynomial such that
P(z1,...,z1,2n) = 0 in Ox. Such a polynomial exists because zq,...,z; IS a
transcendence basis in k(X), and z, is algebraic over z1,...,z, € Ox. Let
F(z1,..., 2L, zn) be @a homogeneous component of maximal degree in P(zq, ..., 2k, z2n).
We choose P to be of minimal possible degree in zq, ..., 2k, 2n.
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When the coordinate projection is finite (2)

CLAIM: In these assumptions, there exists a linear coordinate change
/

z; = z; + Aizn, Such that z, is finite over 2/, ..., 2.
Proof. Step 1: Let P(z1,...,z1,t) be a non-zero polynomial such that
P(z1,...,zr,2n) = 0 in Ox. Such a polynomial exists because zq,...,z; IS a
transcendence basis in k(X), and z, is algebraic over zq,...,z, € Ox. Let
F(z1,..., 2L, 2zn) be a homogeneous component of maximal degree in P(zq, ..., 2k, 2n).

We choose P to be of minimal possible degree in zq, ..., 2k, 2n.

Step 2: Consider a polynomial

Q2 s 21y 2n) 1= F(21 + A12n, -y 25 + Ap2n, 2n)-

Then Q(0,0,...,0,1) = F'(A\q,..., A\, 1) is non-zero on X for general )\;. Indeed,
if F'(A\1,..., A\, 1) is identically O for all \;, the top degree homogeneous term in
P(z1, ..., 2, 2n) Vanishes on X, and we can replace P(zq,..., 2L, 2n) by a smaller
degree polynomial.

Step 3: The degree d polynomial Q(z],...,2z,,t) is monic in ¢, because its
leading term td has non-zero coefficient by Step 2. =
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Noether’s normalization lemma, first version

REMARK: Let A C B C C be ring without zero divisors, C is finitely gener-
ated as B-module, and B as an A-module. Then C' is finitely generated as
an A-module.

REMARK: We have proven that the projection MN,_1: X — C*» ! to coor-
dinates 21,..., 2, 241, .-, 2n—1 is finite. Using this remark and induction by n,
we obtain

COROLLARY: (Noether’'s normalization lemma, first version)

Let X C C" be an irreducible affine subvariety. Then there exists a linear
coordinate change such that the projection of X to the first &k coordinates
gives a finite map X —CF. m
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