
Algebraic geometry I, lecture 14 M. Verbitsky

Geometria Algébrica I
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Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and R−→R′ a ring

homomorphism. Then M ⊗RR′ is a finitely generated R′-module. Indeed,

if M is generated by x1, ..., xn, then M ⊗R R′ is generated by x1, ..., xn.

DEFINITION: A morphism X −→ Y of affine varieties is called finite if the

ring OX is a finitely generated module over OY . In this case, OX is called an

integral extension of OY .

THEOREM: Let X
f−→ Y be a finite morphism. Then for any point y ∈ Y ,

the preimage f−1(y) is finite.

Proof. Step 1: Since OX is finite generated as an OY -module, the ring R :=

OX⊗OY
(OY /my) is finitely generated as an OY /my-module. Since OY /my = C,

we obtain that R is an Artinian algebra over C.

Step 2: Let N ⊂ R be a nilradical. As shown in Lecture 9, Spec(R/N) is a

finite set.

Step 3: As shown in Lecture 8, Spec(R/N) = f−1(y).
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Dominant, finite morphisms are surjective (reminder)

THEOREM: Let f : X −→ Y be a finite, dominant morphism of affine

varieties. Then f is surjective.

Proof. Step 1: Restricting to irreducible components, we can always assume

that Y , and hence X is irreducible. Let A = OY , B = OX. We can consider

A as a subring of B, which has no zero divisors, and assume that B is finitely

generated as A-module.

Step 2: Let my ⊂ A be a maximal ideal corresponding to y ∈ Y . Nakayama’s

lemma implies that myB 6= B.

Step 3: f−1(y) = Spec(B⊗AA/my) = Spec(B/myB). Since this is non-zero

ring, the set f−1(y) is non-empty.
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Finite quotients

CLAIM: Let R be a Noetherian ring without zero divisors, G a group act-
ing by automorphisms on R, and RG the ring of G-invariants. Then ϕ :
SpecR−→ SpecRG is a finite, dominant morphism.

Proof. Step 1: For any g ∈ G, consider the corresponding polynomial map
Pg : R−→R, and let r ∈ R. The polynomial P (t) :=

∏
g∈G(t − g(r)) has

G-invariant coefficients for any r ∈ R, hence P (t) ∈ RG[t]

Step 2: The morphism ϕ is finite because each r ∈ R satisfies the equation
P (r) = 0, where P (t) =

∏
g∈G(t− g(r)). It is dominant, because RG ⊂ R.

DEFINITION: Let G be a finite group acting on an affine variety X by
automorphisms. The quotient space X/G is Spec(OGX).

EXAMPLE: C2/{±1} = C[x2, y2, xy] = C[t1, t2, t3]/(t1t2 = t23). Indeed,
C2/{±1} = SpecA, where A = C[x, y]{±1}: A is the ring of even polynomi-
als.

EXAMPLE: Let G = Z/nZ act on C by multiplication by a primitive root n
√

1.
Then C/G = Spec(C[t]G) = Spec(C[tn]), hence the quotient space C/G is
isomorphic to C.
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Finite quotients (2)

THEOREM: Consider the natural morphism SpecR
ϕ−→ SpecRG. Then

ϕ(x) = ϕ(y) if and only ig x ∈ G · y, that is, the set of points in SpecRG is
identified with the space of G-orbits.

Proof. Step 1: If two maximal ideals of R are G-conjugated, their inter-
sections of RG ⊂ R are equal. This gives ϕ(gx) = ϕ(x): each G-orbit is
mapped to one point. It remains to show that the preimage of any point
is exactly one G-orbit.

Step 2: For any ideal m ⊂ RG, one has (mR)G = m (lecture 6). Then
AG = RG/m, where A := R⊗RG (RG/m) = R/mR.

Step 3: Let m be the maximal ideal of y ∈ SpecRG, and N the nilradical
of A := R/mR. Since ϕ−1(y) = Spec(A/N), points of ϕ−1(y) are maximal
ideals of the ring A/N .

Step 4: A semisimple Artinian C-algebra A/N is a direct sum of finite exten-
sions of C, which are all isomorphic to C, giving A/N =

⊕
C. Since AG = C

(Step 2), the group G acts on summands of A/N =
⊕

C transitively.
Therefore, all points of ϕ−1(y) belong to the same G-orbit.
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Transcendental extensions

CLAIM: Let [k : C] be an extension of C, and [K : k] an extension of k

generated over k by z ∈ K. Then either z is transcendental, and K is

isomorphic to the field of rational functions k(z), or z is algebraic, amd

[K : k] is a finite extension.

Proof: Indeed, either z is a root of polynomial, and then [K : k] is finite, or

K contains the polynomial ring k[z], and then K contains k(z).

LEMMA: Let [K : k] be a finite extension, and [K(t) : k(t)] the correspoinding

extension of rational functions. Then [K(t) : k(t)] is also finite.

Proof: Primitive element theorem gives K = k[α], where α is an algebraic

element, which is a root of a polynomial P (z). Using the isomorphism A/J⊗A
B = B/JB (Lecture 7), we obtain

K(t) = K ⊗k k(t) =
k[z]

(P (z))
⊗k k(t) = k(t)[z]/(P (z)).

EXERCISE: Find a proof which does not use existence of a primitive element.
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Transcendence basis

DEFINITION: Let k(t1, ..., tn) be the field of rational functions of several

variables, that is, the fraction field for the polynomial ring k[t1, ..., tn]. Then

the extension [k(t1, ..., tn) : k] is called a purely transcendental extension

of k, and t1, ..., tn are called algebraically independent.

REMARK: Clearly, t1, ..., tn are algebraically independent if and only if

there are no alrebraic relations of form P (t1, ..., tn) = 0, where P is a

polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K : k] is a collection

z1, ..., zn ∈ K generating a purely trascendental extension K′ := k(z1, ..., zn)

such that [K : K′] is an algebraic extension.
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Transcendence basis in regular functions

Theorem 1: Let k(X) be the field of rational functions on an irreducible affine

variety X, with OX generated by t1, ..., tn. Let S ⊂ {t1, ..., tn} be a maximal

algebraically independent subset. Then the extension [k(X) : k(t1, ..., tk)] is

finite.

Proof: Since OK is finitely generated, we can use induction by the number of

generators t1, ..., tn of OX. Let A ⊂ OX be a subring generated by t1, ..., tn−1,

and t1, ..., tk a transcendence basis on k(A).

If tn is algebraic over k(A), then [k(X) : k(A)] is finite; since [k(A) : k(t1, ..., tk)]

is finite, this implies that [k(X) : k(t1, ..., tk)] is finite.

If tn is transcendental over k(A), we obtain k(X) = k(A)(tn), and [k(X)] =

k(A)(tn) is finite over k(t1, ..., tk, tn) by the lemma above.
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Transcendence basis and dominant morphisms

PROPOSITION: Let X ⊂ Cn be an irreducible affine manifold, t1, ..., tn

coordinates on Cn, and Πk : X −→ Ck the projection to the first k coordinates.

Then the following are equivalent.

(i) Πk is dominant and the extension [k(X) : k(t1, ..., tk)] is finite.

(ii) t1, ..., tk is transcendence basis in k(X).

Proof: Theorem 1 implies that [k(X) : k(t1, ..., tk)] is finite whenever t1, ..., tk
is the transcendence basis. Therefore, (ii) ⇒ (i). Converse is clear, be-

cause k(X) is algebraic over k(t1, ..., tk) ⊂ k(X), hence t1, ..., tk is a maximal

algebraically independent subset.

REMARK: We want to find a projection Πk : X −→ Ck which is finite,

for any given irreducible affine variety X.
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When the coordinate projection is finite

REMARK: Let X ⊂ Cn be an irreducible affine subvariety, zi coordinates on

Cn, and z1, ..., zk transcendence basis on k(X). The projection map Πn−1

is finite if and only if P (zn) = 0 in OX, for some monic polynomial

P (t) ∈ OX[t] with coefficients which are polynomial in z1, ..., zn−1. Indeed,

this is precisely what is needed for OX to be a finitely generated module over

its subalgebra A = OPn−1(X) generated by z1, ..., zn−1 considered as regular

functions on X. Notice that a non-zero polynomial with P (t) ∈ A[t] with

P (zn) = 0 always extists, unless n = k and X = Cn, but it is not necessarily

monic.

CLAIM: In these assumptions, there exists a linear coordinate change

z′i := zi + λizn, such that zn is finite over z′1, ..., z
′
k.

Proof. Step 1: Let P (z1, ..., zk, t) be a non-zero polynomial such that

P (z1, ..., zk, zn) = 0 in OX. Such a polynomial exists because z1, ..., zk is a

transcendence basis in k(X), and zn is algebraic over z1, ..., zk ∈ OX. Let

F (z1, ..., zk, zn) be a homogeneous component of maximal degree in P (z1, ..., zk, zn).

We choose P to be of minimal possible degree in z1, ..., zk, zn.
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When the coordinate projection is finite (2)

CLAIM: In these assumptions, there exists a linear coordinate change

z′i := zi + λizn, such that zn is finite over z′1, ..., z
′
k.

Proof. Step 1: Let P (z1, ..., zk, t) be a non-zero polynomial such that

P (z1, ..., zk, zn) = 0 in OX. Such a polynomial exists because z1, ..., zk is a

transcendence basis in k(X), and zn is algebraic over z1, ..., zk ∈ OX. Let

F (z1, ..., zk, zn) be a homogeneous component of maximal degree in P (z1, ..., zk, zn).

We choose P to be of minimal possible degree in z1, ..., zk, zn.

Step 2: Consider a polynomial

Q(z′1, ..., z
′
k, zn) := F (z1 + λ1zn, ..., zk + λkzn, zn).

Then Q(0,0, ...,0,1) = F (λ1, ..., λk,1) is non-zero on X for general λi. Indeed,

if F (λ1, ..., λk,1) is identically 0 for all λi, the top degree homogeneous term in

P (z1, ..., zk, zn) vanishes on X, and we can replace P (z1, ..., zk, zn) by a smaller

degree polynomial.

Step 3: The degree d polynomial Q(z′1, ..., z
′
k, t) is monic in t, because its

leading term td has non-zero coefficient by Step 2.
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Noether’s normalization lemma, first version

REMARK: Let A ⊂ B ⊂ C be ring without zero divisors, C is finitely gener-

ated as B-module, and B as an A-module. Then C is finitely generated as

an A-module.

REMARK: We have proven that the projection Πn−1 : X −→ Cn−1 to coor-

dinates z′1, ..., z
′
k, zk+1, ..., zn−1 is finite. Using this remark and induction by n,

we obtain

COROLLARY: (Noether’s normalization lemma, first version)

Let X ⊂ Cn be an irreducible affine subvariety. Then there exists a linear

coordinate change such that the projection of X to the first k coordinates

gives a finite map X −→ Ck.
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