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Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and R−→R′ a ring

homomorphism. Then M ⊗RR′ is a finitely generated R′-module. Indeed,

if M is generated by x1, ..., xn, then M ⊗R R′ is generated by x1, ..., xn.

DEFINITION: A morphism X −→ Y of affine varieties is called finite if the

ring OX is a finitely generated module over OY . In this case, OX is called an

integral extension of OY .

THEOREM: Let X
f−→ Y be a finite morphism. Then for any point y ∈ Y ,

the preimage f−1(y) is finite. If, in addition, f is dominant, then it is

surjective.
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Transcendence basis (reminder)

DEFINITION: Let k(t1, ..., tn) be the field of rational functions of several
variables, that is, the fraction field for the polynomial ring k[t1, ..., tn]. Then
the extension [k(t1, ..., tn) : k] is called a purely transcendental extension
of k, and t1, ..., tn are called algebraically independent.

REMARK: Clearly, t1, ..., tn are algebraically independent if and only if
there are no alrebraic relations of form P (t1, ..., tn) = 0, where P is a
polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K : k] is a collection
z1, ..., zn ∈ K generating a purely trascendental extension K′ := k(z1, ..., zn)
such that [K : K′] is an algebraic extension. We call the number n the
transcendental degree of X.

PROPOSITION: Let X ⊂ Cn be an irreducible affine manifold, t1, ..., tn
coordinates on Cn, and Πk : X −→ Ck the projection to the first k coordinates.
Then the following are equivalent.

(i) Πk is dominant and the extension [k(X) : k(t1, ..., tk) is finite.

(ii) t1, ..., tk is transcendence basis in k(X).
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Noether’s normalization lemma (first version)

PROPOSITION: Let X ⊂ Cn be an irreducible affine subvariety, zi coordi-

nates on Cn, and z1, ..., zk transcendence basis on k(X). Then, for all λ1, ..., λk
outside of the zero-set of a certain non-zero homogeneous polynomial, the

function zn ∈ OX is a root of a monic polynomial in the variables z′1, ..., z
′
k,

where z′i := zi + λizn.

Proof: Lecture 14.

Corollary 1: (Noether’s normalization lemma, first version)

Let X ⊂ Cn be an irreducible affine subvariety, zi coordinates on Cn, and

z1, ..., zk transcendence basis on k(X). Then there exists a linear coordinate

change z′i := zi +
∑n−k
j=1 λj+kzj+k, such that the projection Πk : X −→ Ck

to the first k arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection Pn : X −→ Cn−1 is

finite onto its image X1 (after some linear adjustment). Using induction by

n, we can assume that Pk : X1 −→ Ck is also finite, hence the composition

map is finite (composition of finite morphisms is always finite, as we

have seen).
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Noether’s normalization lemma for non-irreducible varieties

The following version works for non-irreducible varieties.

PROPOSITION: Let X ⊂ Cn be an affine subvariety, and Xi its irreducible
components. Denote by k the maximal transcendence degree for k(Xi). Then
there exists a linear coordinate change z′i := zi+

∑n−k
j=1 λj+kzj+k, such that

the projection Πk : X −→ Ck to the first k arguments is a finite.

Proof. Step1: The natural projection map

Ψ : OX −→
∏

m∈Spec(OX)

OX/m

is injective by Hilbert Nullstellensatz.

Step 2: The natural projection map Φ : OX −→
⊕

OXi is injective, because
Ψ factorizes through Φ. It is also finite, because OXi is finitely generated
over OX. Clearly,

∐
Xi = Spec(

⊕
OXi), where

∐
denotes the disjoint union.

Step 3: Choose a coordinate projection Πk : Cn −→ Ck which is finite on each

Xi; such a projection exists by Corollary 1. The composition
∐
Xi −→X

Πk−→
Ck is finite, hence

⊕
OXi is a finitely generated OCk-module. Since OCk is

Noetherian, the submodile OX ⊂
⊕

OXi is also finitely generated.
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Integral closure is finite

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are

integral over A is called the integral closure of A in B.

REMARK: The ring C[z1, ..., zn] is factorial by Gauss lemma, and therefore

integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a

finite extension of its field of fractions, and B the integral closure of A in K.

Then B is finitely generated as an A-module.

Proof: Proven in Lecture 12.

EXAMPLE: Let [K : C(z1, ..., zn)] be a finite extension. Then the integral

closure of C[z1, ..., zn] in X is finitely generated.
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Normalization

COROLLARY: Let X be an affine variety, and Â the integral closure of its
ring of regular functions. Then Â is finitely generated.

Proof: The variety X admits a finite, dominant map to Ck. Let A be the
integral closure of C[z1, ..., zn] in k(X); it is a finitely generated algebra by the
previous theorem. Then A is an integrally closed ring containing OX and with
the same field of fractions. Since A ⊃ OX ⊃ C[z1, ..., zn], we obtain that A is
finite over OX; this gives A = Â.

DEFINITION: Let X be an affine variety, and Â the integral closure of its
ring of regular functions. Then X̃ := Spec(Â) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if
for any finite, birational ϕ : X ′ −→X, the map ϕ is an isomorphism.
Indeed, in this case OX ′ ⊃ OX is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X ′ −→X

such that for any other finite, birational ϕ : X ′′ −→X ′, the map ϕ is an
isomorphism. In particular, any birational, finite map X ′ −→X with X ′

normal is a normalization.
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Finite union of vector spaces over infinite fields

Proposition 1: Let V = kn be a vector space over a field k of characteristic

0, and W1, ...,Wn ( V proper subspaces. Then V 6=
⋃
Wi.

Proof. Step1: Replacing Wi by a bigger subspace if necessarily, we can

assume all Wi have codimension 1 and are defined by an equation λi(v) = 0.

Then X :=
⋃
Wi ⊂ V is an affine subvariety which is given by an equation∏

λi = 0.

Step 2: Let z1, ..., zn be coordinates in V , and z1, ..., zk ∈ k(X) a transcendence

basis (renumber zi if necessarily so that algebraically independent coordinates

go first). The equation
∏
λi = 0 gives an algebraic relation between zi,

restricted to X. Therefore k < n.

Step 3: After an appropriate linear change, we find a linear projection

Π : W −→W1, with dimW1 = k, such that Π : X −→W1 is finite (Noether

normalization lemma).

Step 4: The fibers of Π : X −→W1 are finite, but the fibers of Π :

W −→W1 are vector spaces, and they are infinite.

8



Algebraic geometry I, lecture 15 M. Verbitsky

Primitive element theorem (reminder)

LEMMA: Let k be a field, and A :=
⊕n
i=1 k. Then A contains only finitely

many different k-algebras.

Proof: Let e1, ..., en be the units in the summands of A. Then any udempotent
a ∈ A is a sum of udempotents a =

∑
eia, but eia belongs to the i-th summand

of A. Then eia = 0 or eia = ei, because k contains only two udempotents.
This implies that any k-algebra Ai ⊂ A is generated by a udempotent a,
which is sum of some ai.

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element x ∈ K, that is, an element which generates K.

Proof. Step1: Let k be the algebraic closure of k. The number of in-
termediate fields K ⊃ K′ ⊃ k is finite. Indeed, all such fields correspond
to k-subalgebras in K ⊗k k, and there are finitely many k-subalgebras in
K ⊗k k because K ⊗k k =

⊕
i k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K ) K′ ⊃ k. Such an element exists by Proposition 1, because there
is a finite sets of K′, and they have positive codimension in K considered as
a vector space over k. Then x is primitive, because it generates a subfield
which is equal to K.
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Noether’s normalization lemma (second version)

THEOREM: (Noether’s normalization lemma, second version)

Let X ⊂ Cn be an irreducible affine subvariety, and k the transcendence degree

of X (number of elements in the transcendence basis of [k(X) : C]). Then

there exists a variety X1 ⊂ Ck+1, given by a polynomial equation P (t) = 0,

where P (t) is a monic polynomial with coefficients in C[z1, ..., zk], such that

X is isomorphic to the normalization of X1.

Proof. Step1: Let X ⊂ Cn, with coordinates z1, ..., zn, and z1, ..., zk a tran-

scendence basis in k(X). Then a general linear combination τ :=
∑k−1
i=1 ak+izk+i

is primitive in [k(X) : k(z1, ..., zk)]. Indeed, any proper subfield K ( k(X)

does not contain the k-subspace W generated by zk+1, ..., zn, because W

generates K multiplicatively. There are only finitely many subfields Ki with

k(z1, ..., zk) ⊂ Ki ( k(X). Since W 6⊂ Ki, one has W 6⊂
⋃
Ki as shown above.

Any element τ ∈W\
⋃
Ki is primitive.
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Noether’s normalization lemma (2)

THEOREM: (Noether’s normalization lemma, second version)

Let X ⊂ Cn be an irreducible affine subvariety, and k the transcendence degree

of X (number of elements in the transcendence basis of [k(X) : C]). Then

there exists a variety X1 ⊂ Ck+1, given by a polynomial equation P (t) = 0,

where P (t) is a monic polynomial with coefficients in C[z1, ..., zk], such that

X is isomorphic to the normalization of X1.

Step 2: Let Πk+1 be the projection to the coordinates z1, ..., zk, τ , chosen

in Step 1, and X1 its image, that is, X1 = Spec(B), where B ⊂ OX is the

subalgebra generated by z1, ..., zk, τ . After an appropriate linear change of

coordinates, we can assume that Πk+1 : X −→X1 is finite (Corollary 1) and

birational (Step 1). Also, OX1
= C[z1, ..., zk, t]/(P ) where P (z1, ..., zk, t) is the

monic polynomial constructed in Corollary 1.

Step 3: The projection X −→X1 is birational and finite, and X is normal.

Therefore, X is normalization of X1.
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