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Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and R — R’ a ring
homomorphism. Then M ®p R’ is a finitely generated R’-module. Indeed,
if M is generated by z1,...,z,, then M ®p R’ is generated by z1, ..., zn.

DEFINITION: A morphism X — Y of affine varieties is called finite if the
ring Oy is a finitely generated module over Oy . In this case, Oy is called an
integral extension of Oy .

THEOREM: Let X i> Y be a finite morphism. Then for any point y € Y,

the preimage f~1(y) is finite. If, in addition, f is dominant, then it is
surjective.
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Transcendence basis (reminder)

DEFINITION: Let k(t1,...,tn) be the field of rational functions of several
variables, that is, the fraction field for the polynomial ring k[tq1,...,tn]. Then
the extension [k(t1,...,tn) : k] is called a purely transcendental extension
of k£, and tq,...,t, are called algebraically independent.

REMARK: Clearly, t1,...,t, are algebraically independent if and only if
there are no alrebraic relations of form P(t1,...,tn,) = 0, where P is a
polynomial of n variables.

DEFINITION: Transcendence basis of an extension [K : k] is a collection
21,...,zn, € K generating a purely trascendental extension K’ := k(z1,...,2n)
such that [K : K'] is an algebraic extension. We call the number n the
transcendental degree of X.

PROPOSITION: Let X C C™ be an irreducible affine manifold, tq,...,tn
coordinates on C"®, and N : X — Ck the projection to the first k coordinates.
Then the following are equivalent.

(i) Mg is dominant and the extension [k(X) : k(t1,...,t) is finite.

(ii) tq,...,t; is transcendence basis in k(X).
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Noether’s normalization lemma (first version)

PROPOSITION: Let X C C™ be an irreducible affine subvariety, z; coordi-
nates on C", and z1, ..., 2 transcendence basis on k(X ). Then, for all A1, ..., A\
outside of the zero-set of a certain non-zero homogeneous polynomial, the
function z, € Ox is a root of a monic polynomial in the variables 2|, ..., z,,
where zé = z; + \;jz2n-

Proof: Lecture 14. m

Corollary 1: (Noether’s normalization lemma, first version)

Let X C C" be an irreducible affine subvariety, z; coordinates on C", and
z1, ..., 21 transcendence basis on k(X ). Then there exists a linear coordinate
change z; := z; + Z?;’f Aj+kZj+k» Such that the projection MM, @ X — Ck
to the first £ arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection P, : X —cr1s
finite onto its image X7 (after some linear adjustment). Using induction by
n, we can assume that P, : X; — CF is also finite, hence the composition
map is finite (composition of finite morphisms is always finite, as we
have seen). =
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Noether’s normalization lemma for non-irreducible varieties
T he following version works for non-irreducible varieties.

PROPOSITION: Let X C C™ be an affine subvariety, and X its irreducible
components. Denote by k£ the maximal transcendence degree for k(X;). Then
there exists a linear coordinate change z, := zi—l—zg‘;’f Ai+kZj+k» SUCh that

the projection N, : X — C* to the first £k arguments is a finite.

Proof. Stepl: The natural projection map
W Oy — 11 Ox /m
meSpec(Oy)
IS injective by Hilbert Nullstellensatz.

Step 2: The natural projection map & . Oy — EB@XZ. IS injective, because
U factorizes through <. It is also finite, because @Xz' is finitely generated
over Ox. Clearly, [[ X; = Spec( Ox;), where [] denotes the disjoint union.

Step 3: Choose a coordinate projection M : C" — Ck which is finite on each

M
X;; such a projection exists by Corollary 1. The composition [[X; — X LN
Cck is finite, hence EB@XZ. is a finitely generated @Ck—module. Since @@k: IS
Noetherian, the submodile Ox C @ Ox, is also finitely generated. m
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Integral closure is finite

DEFINITION: Let A C B be rings. The set of all elements in B which are
integral over A is called the integral closure of A Iin B.

REMARK: The ring C[z1, ..., zn] is factorial by Gauss lemma, and therefore
integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a
finite extension of its field of fractions, and B the integral closure of A in K.
Then B is finitely generated as an A-module.

Proof: Proven in Lecture 12. =

EXAMPLE: Let [K : C(z1,...,2n)] be a finite extension. Then the integral
closure of C|[zq,...,2zn] INn X is finitely generated.
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Normalization

COROLLARY: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then A is finitely generated.

Proof: The variety X admits a finite, dominant map to Ck. Let A be the
integral closure of C[z1,...,zn] in k(X); it is a finitely generated algebra by the
previous theorem. Then A is an integrally closed ring containing ©Ox and with
the same field of fractions. Since A D Oy D C|z1,...,zn], We obtain that A is
finite over Oy; this gives A= A. m

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then X := Spec(A4) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if
for any finite, birational ¢ : X' — X, the map ¢ is an isomorphism.
Indeed, in this case Oy, D Ox is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X' — X
such that for any other finite, birational ¢ : X’ — X', the map ¢ is an
isomorphism. In particular, any birational, finite map X' — X with X’

normal IS a normalization. =
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Finite union of vector spaces over infinite fields

Proposition 1: Let V = k™ be a vector space over a field k of characteristic
O, and Wy,...,Wn C V proper subspaces. Then V = [JW,.

Proof. Stepl: Replacing W; by a bigger subspace if necessarily, we can
assume all W; have codimension 1 and are defined by an equation \;(v) = 0.
Then X (= W; C V is an affine subvariety which is given by an equation
[TA; = 0.

Step 2: Let 21, ...,2zn, be coordinates in V, and z1, ..., z;. € k(X) a transcendence
basis (renumber z; if necessarily so that algebraically independent coordinates
go first). The equation [[A; = 0 gives an algebraic relation between z;,
restricted to X. Therefore k£ < n.

Step 3: After an appropriate linear change, we find a linear projection
Mn: W — Wy, with dimWy = k, such that N : X — Wy is finite (Noether
normalization lemma).

Step 4: The fibers of 1 : X — W7 are finite, but the fibers of Il :
W — W7 are vector spaces, and they are infinite. m
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Primitive element theorem (reminder)

LEMMA: Let k be a field, and A :=@]_; k. Then A contains only finitely
many different k-algebras.

Proof: Let eq,...,en be the units in the summands of A. Then any udempotent
a € Ais asum of udempotents a = ) e;a, but ¢;a belongs to the :-th summand
of A. Then e;a = 0 or e;a = ¢;, because k contains only two udempotents.
This implies that any k-algebra A; C A is generated by a udempotent a,
which is sum of some ¢;. =

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element =z € K, that is, an element which generates K.

Proof. Stepl: Let k be the algebraic closure of k. The number of in-
termediate fields K D K’ D k is finite. Indeed, all such fields correspond
to k-subalgebras in K ®; k, and there are finitely many k-subalgebras in
K @i k because K @ k=@, k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K O K’ D k. Such an element exists by Proposition 1, because there
is a finite sets of K/, and they have positive codimension in K considered as
a vector space over k. Then x is primitive, because it generates a subfield
which is equal to K. =
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Noether’s normalization lemma (second version)

THEOREM: (Noether’'s normalization lemma, second version)

Let X C C" be an irreducible affine subvariety, and k the transcendence degree
of X (number of elements in the transcendence basis of [k(X) : C]). Then
there exists a variety X7 c CFT1, given by a polynomial equation P(t) = 0,
where P(t) is @ monic polynomial with coefficients in C[zq,..., 2], such that
X is isomorphic to the normalization of X;.

Proof. Stepl: Let X C C", with coordinates z1,...,2n, and zq,...,z; a tran-
scendence basisin k(X). Then a general linear combination 7 := Zf:_% Qfot-i 2ot
is primitive in [k(X) : k(z1,...,2)]. Indeed, any proper subfield K C k(X)
does not contain the k-subspace W generated by zpy1,...,2n, because W
generates K multiplicatively. There are only finitely many subfields K; with
k(z1,...,2r) C K; C k(X). Since W ¢ K;, one has W ¢ |J K; as shown above.
Any element 7 € W\ K; is primitive.

10



Algebraic geometry I, lecture 15 M. Verbitsky

Noether’s normalization lemma (2)

THEOREM: (Noether’'s normalization lemma, second version)

Let X C C" be an irreducible affine subvariety, and k the transcendence degree
of X (number of elements in the transcendence basis of [k(X) : C]). Then
there exists a variety X7 c CFT1, given by a polynomial equation P(t) = 0,
where P(t) is @ monic polynomial with coefficients in C[zq,..., 2], such that
X is isomorphic to the normalization of X;.

Step 2: Let I, be the projection to the coordinates zq,..., 2, 7, chosen
in Step 1, and X; its image, that is, X7 = Spec(B), where B C Oy is the
subalgebra generated by =z1,...,2;, 7. After an appropriate linear change of
coordinates, we can assume that Mgy, : X — X is finite (Corollary 1) and
birational (Step 1). Also, Ox, = Clzq, ..., 2, t]/(P) where P(z1,...,z,t) is the
monic polynomial constructed in Corollary 1.

Step 3: The projection X — X4 is birational and finite, and X is normal.
T herefore, X is normalization of X;. =
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