Geometria Algébrica I

lecture 16: Galois coverings and Galois categories

Misha Verbitsky

IMPA, sala 232

October 15, 2018

M. Verbitsky

Covering maps

DEFINITION: Let $\varphi : \tilde{M} \longrightarrow M$ be a continuous map of manifolds (or CW complexes). We say that φ is a covering if φ is locally a homeomorphism, and for any $x \in M$ there exists a neighbourhood $U \ni x$ such that is a disconnected union of several manifolds U_i such that the restriction $\varphi|_{U_i}$ is a homeomorphism.

REMARK: From now on, *M* is connected, locally conntractible topological space.

THEOREM: A local homeomorphism of compacts spaces is a covering.

DEFINITION: Let Γ be a discrete group continuously acting on a topological space M. This action is called **properly discontinuous** if M is locally compact, and the space of orbits of Γ is Hausdorff.

THEOREM: Let Γ be a discrete group acting on M properly discontinuously. Suppose that the stabilizer group $\Gamma' : St_{\Gamma}(x)$ is the same for all $x \in M$. Then $M \longrightarrow M/\Gamma$ is a covering. Moreover, all covering maps are obtained like that.

These results are left as exercises.

Category of coverings

DEFINITION: Fix a topological space M. The category of coverings of M is defined as follows: its objects are coverings of M, its morphisms are maps $M_1 \longrightarrow M_2$ commuting with projection to M.

DEFINITION: A trivial covering is a covering $M \times S \longrightarrow M$, where S is a discrete set.

EXERCISE: Let M be a space with properly discontinuous action of Γ . Suppose that the stabilizer group $\Gamma' : \operatorname{St}_{\Gamma}(x)$ is the same for all $x \in M$. Prove that the covering $\pi : M \longrightarrow M/\Gamma$ is trivial if and only if π has a continuous section.

Finite coverings

EXAMPLE: A map $x \longrightarrow nx$ in a circle S^1 is a covering.

EXAMPLE: For any non-degenerate integer matrix $A \in \text{End}(\mathbb{Z}^n)$, the corresponding map of a torus T^n is a covering.

CLAIM: Let $\varphi : \tilde{M} \longrightarrow M$ be a covering, with M connected. Then the number of preimages $|\varphi^{-1}(m)|$ is constant in M.

Proof: Since $\varphi^{-1}(U)$ is a disconnected union of several copies of U, this number is a locally constant function of m.

DEFINITION: Let $\varphi : \tilde{M} \longrightarrow M$ be a covering, with M connected. The number $|\varphi^{-1}(m)|$ is called **degree** of a map φ .

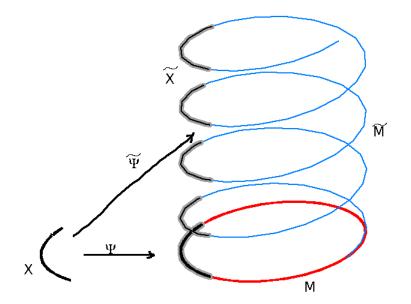
CLAIM: Any covering $\varphi : \tilde{M} \longrightarrow M$ with \tilde{M} compact has finite degree.

Proof: Take U in such a way that $\varphi^{-1}(U)$ is a disconnected union of several copies of U, and let $x \in U$. Then $\varphi^{-1}(x)$ is discrete, and since \tilde{M} is compact, any discrete subset of \tilde{M} is finite.

M. Verbitsky

Homotopy lifting

LEMMA: ("Homotopy lifting lemma") The map $\varphi : \tilde{M} \longrightarrow M$ is a covering iff φ is locally a homeomorphism, and for any path $\Psi : [0,1] \longrightarrow M$ and any $x \in \varphi^{-1}(\Psi(0))$, there is a lifting $\tilde{\Psi} : [0,1] \longrightarrow \tilde{M}$ such that $\tilde{\Psi}(0) = x$ and $\varphi(\tilde{\Psi}(t)) = \Psi(t)$. Moreover, the lifting is uniquely determined by the homotopy class of Ψ in the set of all paths connecting $\Psi(0)$ to $\Psi(1)$.



Homotopy lifting

COROLLARY: If *M* is simply connected, all connected coverings $\tilde{M} \longrightarrow M$ are isomorphic to *M*.

Universal covering

THEOREM: Let M be a locally connected, locally simply connected space. Then there exists a covering $\tilde{M} \longrightarrow M$, called universal covering, which is simply connected. Moreover, the universal covering is unique up to an isomorphism of coverings.

Proof: Left as an exercise. ■

CLAIM: In the above assumptions, let \tilde{M} be connected. Then \tilde{M} is uniquely determined by a subgroup $G \subset \pi_1(M)$ of all loops which are lifted to closed loops. Moreover, $M = \tilde{M}/G$, where \tilde{M} is the universal covering.

Proof: Use the homotopy lifting lemma. ■

Coverings and group actions

THEOREM: Fix a point $x \in M$. Then the category of coverings $\tilde{M} \xrightarrow{\sigma} M$ is equivalent to the category of sets with $\Gamma := \pi_1(M, x)$ -action.

Proof. Step1: The set $\sigma^{-1}(x) \subset \tilde{M}$ is equipped with a natural Γ -action: for any loop $\gamma \subset M$ from x to itself representing $g \in \Gamma$, its lifting gives a map from $\sigma^{-1}(x)$ to itself, which is clearly compatible with the multiplication in $\pi_1(M, x)$.

Step 2: Let \tilde{M} be the universal cover of M, and S be a set with Γ -action. Consider the set $S \times \tilde{M}/\Gamma \xrightarrow{\sigma} M$. This is clearly a covering over M, and $\sigma^{-1}(x) = S$ by construction.

Torsors

DEFINITION: Let G be a group. G-Torsor S is a set with free, transitive G-action. Morphism of G-torsors is a map of G-torsors which is compatible with G-action. Trivialization of a G-torsor is a choice of an isomorphism $S \cong G$, where G is considered as a G-torsor with left G-action.

REMARK: To chose a trivialization is the same as to chose an element $s \in S$. Indeed, the map taking unit to s is uniquely extended to an isomorphism $G \longrightarrow S$.

EXAMPLE: Affine space is a torsor over a linear space.

EXAMPLE: The set of all bases (basises) in a vector space $V = \mathbb{R}^n$ is a torsor over a group $GL(n, \mathbb{R})$ of automorphisms of V.

Torsors and quotient maps

EXAMPLE: Let $M_1 \xrightarrow{\pi} M = M_1/\Gamma$, where Γ freely acts on M_1 . Then $\pi^{-1}(m)$ is Γ -torsor for any $m \in M$. However, to chose a trivialization of this torsor which depends continuously on m is the same as to chose a section, that is, trivialize the covering.

CLAIM: Let T be G-torsor. Then $T \times T$ is naturally isomorphic to $T \times G$ as a G-torsor.

Proof: For each $x, y \in T$, there exists a unique $g \in G$ such that y = gx. Therefore, the natural map $T \times G \longrightarrow T \times T$ mapping (x,g) to x, gx is an isomorphism of *G*-torsors.

Fibered products

DEFINITION: Let $X \xrightarrow{\pi_X} M, Y \xrightarrow{\pi_Y} M$ be maps of sets. Fibered product $X \times_M Y$ is the set of all pairs $(x, y) \in X \times Y$ such that $\pi_X(x) = \pi_Y(y)$.

CLAIM: Let $M_1 \longrightarrow M$ and $M_2 \longrightarrow M$ be coverings. Then the fibered product $M_1 \times_M M_2$ is also a covering.

Proof: The statement is local in M, hence it would suffice to prove it when $M_i = S_i \times M$, where S_i is a discrete set. Then $M_1 \times_M M_2 = S_1 \times S_2 \times M$, hence it is also a covering of M.

CLAIM: Let $M_1 \xrightarrow{\pi} M = M_1/\Gamma$, where Γ acts on M freely and properly discontinuously. Then $M_1 \times_M M_1 = M_1 \times \Gamma$.

Proof: Let $m \in M$. Then $\pi^{-1}(m)$ is a Γ -torsor. Using the natural isomorphism of Γ -torsors $\pi^{-1}(m) \times \pi^{-1}(m) = \pi^{-1}(m) \times G$, we obtain an isomorphism $M_1 \times_M M_1 = M_1 \times \Gamma$ of coverings.

Galois coverings

THEOREM: Let $\tilde{M} \xrightarrow{\sigma} M$ be a connected covering. Then the following are equivalent.

(i) $\pi_1(\tilde{M})$ is a normal subgroup in $\pi_1(M)$.

(ii) $\operatorname{Aut}_M(\tilde{M})$ acts freely on the set $\pi^{-1}(x)$, for any $x \in M$.

(iii) The fibered product $\tilde{M}\times_M\tilde{M}$ is isomorphic to $\tilde{M}\times S$, where S is a discrete set.

Proof: Left as a an exercise.

DEFINITION: A covering which satisfies any of these assumptions is called a Galois covering.

Galois theory for coverings

DEFINITION: Let $\tilde{M} \xrightarrow{\sigma} M$ be a covering, which is expressed as a composition

$$\tilde{M} \xrightarrow{\sigma_1} M_1 \xrightarrow{\sigma_2} M,$$

with \tilde{M} and M_1 connected. In this case we say that M_1 is an intermediate covering between \tilde{M} and M.

THEOREM: (main theorem of Galois theory for coverings) Let $\tilde{M} \xrightarrow{\sigma} M$ be a Galois covering. Then the intermediate coverings $M_1 \longrightarrow M$ are in bijective correspondence with the subgroups of the automorphism group $\operatorname{Aut}_M(\tilde{M})$, which is called the Galois group of the covering.

Galois extensions (reminder)

DEFINITION: Let [K : k] be a finite extension. It is called a Galois extension if the algebra $K \otimes_k K$ is isomorphic to a direct sum of several copies of K.

EXERCISE: Let K = k[t]/(P) be a primitive, separable extension, with deg P(t) = n.

1. Prove that [K : k] is a Galois extension if and only if P(t) has n roots in K[t].

2. Consider an extension [K' : K] obtained by adding all roots of all irreducible components of $P(t) \in K[t]$. Prove that [K' : k] is a Galois extension.

EXERCISE: Prove that [K : k] is a Galois extension if and only if $Aut_k(K)$ acts transitively on all components of $K \otimes_k \overline{k} = \overline{k}^n$.

Galois group (reminder)

EXERCISE: Let [K : k] be a finite extension, and $G := \operatorname{Aut}_k K$ the group of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if and only if the set K^G of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group $Aut_k K$ is called **the Galois group of** [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and $Gal_k K$ its Galois group. Then the subgroups $H \subset Gal_k K$ are in bijective correspondence with the intermediate subfields $k \subset K^H \subset K$, with K^H obtained as the set of *H*-invariant elements of *K*.

EXERCISE: Prove that for any $q = p^n$ there exists a finite field \mathbb{F}_q of q elements. Prove that $[\mathbb{F}_q : \mathbb{F}_p]$ is a Galois extension. Prove that its Galois group is cyclic of order n, and generated by the Frobenius automorphism mapping x to x^p .

Limits and colimits of diagrams

DEFINITION: Diagram in a category C is an oriented graph with objects of C in vertices and morphism in edges.

DEFINITION: Let $S = \{X_i, \varphi_{ij}\}$ be a diagram in \mathcal{C} , and $\vec{\mathcal{C}}_S$ be a category of pairs (object X in \mathcal{C} , morphisms $\psi_i : X \longrightarrow X_i$, defined for all X_i) making the diagram formed by $(X, X_i, \psi_i, \varphi_{ij})$ commutative for each edge of S. The terminal object in this category is called limit, or inverse limit of the diagram S.

DEFINITION: Colimit, or **direct limit** is obtained from the previous definition by inverting all arrows and replacing "terminal" by "initial".

EXAMPLE: Let Γ be \mathbb{Z} or some interval in \mathbb{Z} , and S a diagram in the category of sets with all maps $\varphi_{i,i+1}$: $X_i \longrightarrow X_{i+1}$ injective. Then limit of S is intersection of all X_i , and colimit is their union.

Products and coproducts

EXAMPLE: Let S be a diagram with two vertices X_1 and X_2 and no arrows. The inverse limit of S is called **product** of X_1 and X_2 , and inverse limit **the coproduct**.

EXAMPLE: Products in the category of sets, vector spaces and topological spaces are the usual products of sets, vector spaces and topological spaces **(check this)**.

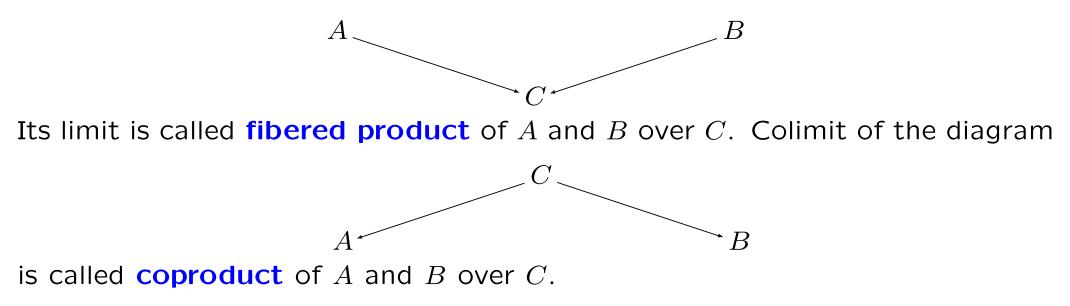
EXAMPLE: Coproduct in the category of groups is called **free product**, or **amalgamated product**. Coproduct of the group \mathbb{Z} with itself is called **free group**. Coproduct in the category of vector spaces is also the usual product of vector spaces.

EXERCISE: Let C be the category of coverings of M. Prove that the product in C is fibered product over M. Prove that coproduct is a disjoint union of coverings.

EXERCISE: Let k be a field of characteristic 0 and C the category of finitedimensional semisimple k-algebras. Prove that the coproduct in C is tensor product over k and product is direct sum of fields.

Fibered product (reminder)

DEFINITION: Consider the following diagram:



EXERCISE: Prove that the fibered product of algebraic varieties is the same as their product in the category of algebraic varieties.

EXERCISE: Prove that the coproduct of rings A and B over C is $A \otimes_C B$. Prove that the coproduct of reduced rings A and B over C in the category of reduced rings $A \otimes_C B/I$, where I is nilradical.

Epimorphisms, monomorphisms, group quotients

DEFINITION: Let C be a category. A morphism $\varphi : X \longrightarrow Y$ is called **an epimorphism** if for any two distinct $\psi_1, \psi_2 : Y \longrightarrow Z$, the compositions $\varphi \circ \psi_1$ and $\varphi \circ \psi_2$ are distinct. It is called **a monomorphism** if for any two distinct $\psi_1, \psi_2 : Z \longrightarrow X$, the compositions $\psi_1 \circ \varphi$ and $\psi_2 \circ \varphi$ are distinct.

DEFINITION: Group action on an object X in category C is a map ρ : $G \longrightarrow Mor(X, X)$ from the group G to Mor(X, X) compatible with the product. G-invariant morphism is a morphism φ : $X \longrightarrow Y$ such that for any $g \in G$, one has $\rho(g) \circ \varphi = \varphi$. Group quotient Y = X/G is a G-invariant map $X \longrightarrow Y$ such that the composition map $Mor(Y, Z) \longrightarrow Mor(X, Z)$ induces a bijection between Mor(Y, Z) and the set $Mor(X, Z)^G$ of G-invariant morphisms.

Galois categories

DEFINITION: Let C be a category equipped with a functor $F : C \longrightarrow Sets$ called **the fiber functor**. It is called **Galois category** if the following holds.

(i) *C* contains a terminal object, initial object, fibered product of any two objects over a third, and finite coproducts ("direct sums") of any objects in *C*.

(ii) *C* contains finite group quotients.

(iii) Any morphism in *C* is a composition of an epimorphism and a monomorphism. Any monomorphism $\varphi : X \longrightarrow Y$ is an isomorphism of *X* and a direct summand of *Y*.

(iv) The fiber functor F commutes with the fiber products, finite coproducts and finite group quotients. Moreover, for any morphism u such that F(u) is an isomorphism, u is also an isomorphism.

DEFINITION: Let G be a group. Finite sets with G-action form a category, with Mor(X, Y) the set of all maps from X to Y compatible with the action of G. Clearly, **this category is a Galois category**. **EXAMPLE:** Category of finite coverings of M is a Galois category.

EXAMPLE: Let C be the category of k-algebras isomorphic to finite direct sums of finite separable extensions of k. Then its opposite C^{op} is a Galois category. The fiber functor F maps [K : k] to the set of irreducible idempotents in the algebra $K \otimes_k \overline{k} = \overline{k}^n$.

Finite sets with *G***-action**

THEOREM: (Grothendieck)

Let C be a Galois category. Then C is equivalent to a category of finite sets with action of a group G(C).

DEFINITION: Profinite completion \hat{G} of a group G is a the limit of all its finite quotient groups. A group is called **profinite** if it is isomorphic to its profinite completion.

REMARK: Category of finite sets with *G*-action is clearly equivalent to the category of finite sets with \hat{G} -action. Indeed, the set of homomorphisms from *G* to a finite group Γ is identified with the set of homomorphisms from \hat{G} to Γ .

THEOREM: In Grothendieck's theorem, the group $G(\mathcal{C})$ can be always replaced by its profinite completion $\hat{G}(\mathcal{C})$, which is uniquely determined by the Galois category \mathcal{C} and its fiber functor. Moreover, $\hat{G}(\mathcal{C})$ is isomorphic to the group of automorphisms of the fiber functor.

DEFINITION: The group $\hat{G}(\mathcal{C})$ is called **the absolute Galois group of** \mathcal{C} .