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Covering maps

DEFINITION: Let ϕ : M̃ −→M be a continuous map of manifolds (or CW
complexes). We say that ϕ is a covering if ϕ is locally a homeomorphism,
and for any x ∈ M there exists a neighbourhood U 3 x such that is a dis-
connected union of several manifolds Ui such that the restriction ϕ

∣∣∣Ui is a
homeomorphism.

REMARK: From now on, M is connected, locally conntractible topo-
logical space.

THEOREM: A local homeomorphism of compacts spaces is a covering.

DEFINITION: Let Γ be a discrete group continuously acting on a topolog-
ical space M . This action is called properly discontinuous if M is locally
compact, and the space of orbits of Γ is Hausdorff.

THEOREM: Let Γ be a discrete group acting on M properly discontinuously.
Suppose that the stabilizer group Γ′ : StΓ(x) is the same for all x ∈M . Then
M −→M/Γ is a covering. Moreover, all covering maps are obtained like
that.

These results are left as exercises.
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Category of coverings

DEFINITION: Fix a topological space M . The category of coverings of

M is defined as follows: its objects are coverings of M , its morphisms are

maps M1 −→M2 commuting with projection to M .

DEFINITION: A trivial covering is a covering M × S −→M , where S is a

discrete set.

EXERCISE: Let M be a space with properly discontinuous action of Γ.

Suppose that the stabilizer group Γ′ : StΓ(x) is the same for all x ∈M . Prove

that the covering π : M −→M/Γ is trivial if and only if π has a continuous

section.
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Finite coverings

EXAMPLE: A map x−→ nx in a circle S1 is a covering.

EXAMPLE: For any non-degenerate integer matrix A ∈ End(Zn), the corre-

sponding map of a torus Tn is a covering.

CLAIM: Let ϕ : M̃ −→M be a covering, with M connected. Then the

number of preimages |ϕ−1(m)| is constant in M.

Proof: Since ϕ−1(U) is a disconnected union of several copies of U , this

number is a locally constant function of m.

DEFINITION: Let ϕ : M̃ −→M be a covering, with M connected. The

number |ϕ−1(m)| is called degree of a map ϕ.

CLAIM: Any covering ϕ : M̃ −→M with M̃ compact has finite degree.

Proof: Take U in such a way that ϕ−1(U) is a disconnected union of several

copies of U , and let x ∈ U . Then ϕ−1(x) is discrete, and since M̃ is compact,

any discrete subset of M̃ is finite.
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Homotopy lifting

LEMMA: (“Homotopy lifting lemma”) The map ϕ : M̃ −→M is a covering
iff ϕ is locally a homeomorphism, and for any path Ψ : [0,1]−→M and any
x ∈ ϕ−1(Ψ(0)), there is a lifting Ψ̃ : [0,1]−→ M̃ such that Ψ̃(0) = x

and ϕ(Ψ̃(t)) = Ψ(t). Moreover, the lifting is uniquely determined by the
homotopy class of Ψ in the set of all paths connecting Ψ(0) to Ψ(1).

Homotopy lifting

COROLLARY: If M is simply connected, all connected coverings M̃ −→M

are isomorphic to M.
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Universal covering

THEOREM: Let M be a locally connected, locally simply connected space.

Then there exists a covering M̃ −→M, called universal covering, which

is simply connected. Moreover, the universal covering is unique up to

an isomorphism of coverings.

Proof: Left as an exercise.

CLAIM: In the above assumptions, let M̃ be connected. Then M̃ is uniquely

determined by a subgroup G ⊂ π1(M) of all loops which are lifted to

closed loops. Moreover, M = M̃/G, where M̃ is the universal covering.

Proof: Use the homotopy lifting lemma.
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Coverings and group actions

THEOREM: Fix a point x ∈ M . Then the category of coverings M̃
σ−→ M

is equivalent to the category of sets with Γ := π1(M,x)-action.

Proof. Step1: The set σ−1(x) ⊂ M̃ is equipped with a natural Γ-action: for

any loop γ ⊂ M from x to itself representing g ∈ Γ, its lifting gives a map

from σ−1(x) to itself, which is clearly compatible with the multiplication in

π1(M,x).

Step 2: Let M̃ be the universal cover of M , and S be a set with Γ-action.

Consider the set S × M̃/Γ
σ−→ M . This is clearly a covering over M , and

σ−1(x) = S by construction.
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Torsors

DEFINITION: Let G be a group. G-Torsor S is a set with free, transitive

G-action. Morphism of G-torsors is a map of G-torsors which is compatible

with G-action. Trivialization of a G-torsor is a choice of an isomorphism

S ∼= G, where G is considered as a G-torsor with left G-action.

REMARK: To chose a trivialization is the same as to chose an element

s ∈ S. Indeed, the map taking unit to s is uniquely extended to an isomorphism

G−→ S.

EXAMPLE: Affine space is a torsor over a linear space.

EXAMPLE: The set of all bases (basises) in a vector space V = Rn is a

torsor over a group GL(n,R) of automorphisms of V .
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Torsors and quotient maps

EXAMPLE: Let M1
π−→ M = M1/Γ, where Γ freely acts on M1. Then

π−1(m) is Γ-torsor for any m ∈ M . However, to chose a trivialization of this

torsor which depends continuously on m is the same as to chose a section,

that is, trivialize the covering.

CLAIM: Let T be G-torsor. Then T × T is naturally isomorphic to T ×G
as a G-torsor.

Proof: For each x, y ∈ T , there exists a unique g ∈ G such that y = gx.

Therefore, the natural map T × G−→ T × T mapping (x, g) to x, gx is an

isomorphism of G-torsors.
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Fibered products

DEFINITION: Let X
πX−→ M,Y

πY−→ M be maps of sets. Fibered product

X ×M Y is the set of all pairs (x, y) ∈ X × Y such that πX(x) = πY (y).

CLAIM: Let M1 −→M and M2 −→M be coverings. Then the fibered prod-

uct M1 ×M M2 is also a covering.

Proof: The statement is local in M , hence it would suffice to prove it when

Mi = Si ×M , where Si is a discrete set. Then M1 ×M M2 = S1 × S2 ×M ,

hence it is also a covering of M .

CLAIM: Let M1
π−→ M = M1/Γ, where Γ acts on M freely and properly

discontinuously. Then M1 ×M M1 = M1 × Γ.

Proof: Let m ∈M . Then π−1(m) is a Γ-torsor. Using the natural isomorphism

of Γ-torsors π−1(m) × π−1(m) = π−1(m) × G, we obtain an isomorphism

M1 ×M M1 = M1 × Γ of coverings.
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Galois coverings

THEOREM: Let M̃
σ−→ M be a connected covering. Then the following

are equivalent.

(i) π1(M̃) is a normal subgroup in π1(M).

(ii) AutM(M̃) acts freely on the set π−1(x), for any x ∈M .

(iii) The fibered product M̃×M M̃ is isomorphic to M̃×S, where S is a discrete

set.

Proof: Left as a an exercise.

DEFINITION: A covering which satisfies any of these assumptions is called

a Galois covering.
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Galois theory for coverings

DEFINITION: Let M̃
σ−→ M be a covering, which is expressed as a com-

position

M̃
σ1−→ M1

σ2−→ M,

with M̃ and M1 connected. In this case we say that M1 is an intermediate

covering between M̃ and M .

THEOREM: (main theorem of Galois theory for coverings)

Let M̃
σ−→ M be a Galois covering. Then the intermediate coverings

M1 −→M are in bijective correspondence with the subgroups of the

automorphism group AutM(M̃), which is called the Galois group of the

covering.
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Galois extensions (reminder)

DEFINITION: Let [K : k] be a finite extension. It is called a Galois exten-

sion if the algebra K ⊗k K is isomorphic to a direct sum of several copies of

K.

EXERCISE: Let K = k[t]/(P ) be a primitive, separable extension, with

degP (t) = n.

1. Prove that [K : k] is a Galois extension if and only if P (t) has n roots

in K[t].

2. Consider an extension [K′ : K] obtained by adding all roots of all irreducible

components of P (t) ∈ K[t]. Prove that [K′ : k] is a Galois extension.

EXERCISE: Prove that [K : k] is a Galois extension if and only if Autk(K)

acts transitively on all components of K ⊗k k = k
n

.
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Galois group (reminder)

EXERCISE: Let [K : k] be a finite extension, and G := AutkK the group

of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if

and only if the set KG of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group AutkK is

called the Galois group of [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and GalkK its Galois group. Then the

subgroups H ⊂ GalkK are in bijective correspondence with the inter-

mediate subfields k ⊂ KH ⊂ K, with KH obtained as the set of H-invariant

elements of K.

EXERCISE: Prove that for any q = pn there exists a finite field Fq of q

elements. Prove that [Fq : Fp] is a Galois extension. Prove that its Galois

group is cyclic of order n, and generated by the Frobenius automorphism

mapping x to xp.
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Limits and colimits of diagrams

DEFINITION: Diagram in a category C is an oriented graph with objects

of C in vertices and morphism in edges.

DEFINITION: Let S = {Xi, ϕij} be a diagram in C, and ~CS be a category

of pairs (object X in C, morphisms ψi : X −→Xi, defined for all Xi) making

the diagram formed by (X,Xi, ψi, ϕij) commutative for each edge of S. The

terminal object in this category is called limit, or inverse limit of the diagram

S.

DEFINITION: Colimit, or direct limit is obtained from the previous defi-

nition by inverting all arrows and replacing “terminal” by “initial”.

EXAMPLE: Let Γ be Z or some interval in Z, and S a diagram in the

category of sets with all maps ϕi,i+1 : Xi −→Xi+1 injective. Then limit of

S is intersection of all Xi, and colimit is their union.
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Products and coproducts

EXAMPLE: Let S be a diagram with two vertices X1 and X2 and no arrows.
The inverse limit of S is called product of X1 and X2, and inverse limit the
coproduct.

EXAMPLE: Products in the category of sets, vector spaces and topological
spaces are the usual products of sets, vector spaces and topological spaces
(check this).

EXAMPLE: Coproduct in the category of groups is called free product, or
amalgamated product. Coproduct of the group Z with itself is called free
group. Coproduct in the category of vector spaces is also the usual product
of vector spaces.

EXERCISE: Let C be the category of coverings of M . Prove that the
product in C is fibered product over M. Prove that coproduct is a
disjoint union of coverings.

EXERCISE: Let k be a field of characteristic 0 and C the category of finite-
dimensional semisimple k-algebras. Prove that the coproduct in C is tensor
product over k and product is direct sum of fields.
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Fibered product (reminder)

DEFINITION: Consider the following diagram:

A B

C �-

Its limit is called fibered product of A and B over C. Colimit of the diagram

C

A� B
-

is called coproduct of A and B over C.

EXERCISE: Prove that the fibered product of algebraic varieties is the

same as their product in the category of algebraic varieties.

EXERCISE: Prove that the coproduct of rings A and B over C is A⊗CB.

Prove that the coproduct of reduced rings A and B over C in the category

of reduced rings A⊗C B/I, where I is nilradical.
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Epimorphisms, monomorphisms, group quotients

DEFINITION: Let C be a category. A morphism ϕ : X −→ Y is called an

epimorphism if for any two distinct ψ1, ψ2 : Y −→ Z, the compositions ϕ ◦ψ1

and ϕ ◦ ψ2 are distinct. It is called a monomorphism if for any two distinct

ψ1, ψ2 : Z −→X, the compositions ψ1 ◦ ϕ and ψ2 ◦ ϕ are distinct.

DEFINITION: Group action on an object X in category C is a map ρ :

G−→ Mor(X,X) from the group G to Mor(X,X) compatible with the product.

G-invariant morphism is a morphism ϕ : X −→ Y such that for any g ∈ G,

one has ρ(g)◦ϕ = ϕ. Group quotient Y = X/G is a G-invariant map X −→ Y

such that the composition map Mor(Y, Z)−→ Mor(X,Z) induces a bijection

between Mor(Y, Z) and the set Mor(X,Z)G of G-invariant morphisms.
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Galois categories

DEFINITION: Let C be a category equipped with a functor F : C −→ Sets

called the fiber functor. It is called Galois category if the following holds.
(i) C contains a terminal object, initial object, fibered product of

any two objects over a third, and finite coproducts (“direct sums”) of
any objects in C.

(ii) C contains finite group quotients.
(iii) Any morphism in C is a composition of an epimorphism and a

monomorphism. Any monomorphism ϕ : X −→ Y is an isomorphism of X
and a direct summand of Y .

(iv) The fiber functor F commutes with the fiber products, finite
coproducts and finite group quotients. Moreover, for any morphism u
such that F (u) is an isomorphism, u is also an isomorphism.

DEFINITION: Let G be a group. Finite sets with G-action form a cat-
egory, with Mor(X,Y ) the set of all maps from X to Y compatible with the
action of G. Clearly, this category is a Galois category.
EXAMPLE: Category of finite coverings of M is a Galois category.
EXAMPLE: Let C be the category of k-algebras isomorphic to finite direct
sums of finite separable extensions of k. Then its opposite Cop is a Ga-
lois category. The fiber functor F maps [K : k] to the set of irreducible
idempotents in the algebra K ⊗k k = k

n
.
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Finite sets with G-action

THEOREM: (Grothendieck)

Let C be a Galois category. Then C is equivalent to a category of finite

sets with action of a group G(C).

DEFINITION: Profinite completion Ĝ of a group G is a the limit of all its

finite quotient groups. A group is called profinite if it is isomorphic to its

profinite completion.

REMARK: Category of finite sets with G-action is clearly equivalent to the

category of finite sets with Ĝ-action. Indeed, the set of homomorphisms

from G to a finite group Γ is identified with the set of homomorphisms

from Ĝ to Γ.

THEOREM: In Grothendieck’s theorem, the group G(C) can be always re-

placed by its profinite completion Ĝ(C), which is uniquely determined by

the Galois category C and its fiber functor. Moreover, Ĝ(C) is isomorphic

to the group of automorphisms of the fiber functor.

DEFINITION: The group Ĝ(C) is called the absolute Galois group of C.
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