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Covering maps

DEFINITION: Let ¢ : M — M be a continuous map of manifolds (or CW
complexes). We say that ¢ is a covering if ¢ is locally a homeomorphism,
and for any x € M there exists a neighbourhood U > x such that is a dis-
connected union of several manifolds U; such that the restriction gp)Ui IS a
homeomorphism.

REMARK: From now on, M is connected, locally conntractible topo-
logical space.

THEOREM: A local homeomorphism of compacts spaces is a covering.

DEFINITION: Let ' be a discrete group continuously acting on a topolog-
ical space M. This action is called properly discontinuous if M is locally
compact, and the space of orbits of I' is Hausdorff.

THEOREM: Let I be a discrete group acting on M properly discontinuously.
Suppose that the stabilizer group " : St () is the same for all € M. Then
M — M/T" is a covering. Moreover, all covering maps are obtained like
that.

These results are left as exercises.
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Category of coverings

DEFINITION: Fix a topological space M. The category of coverings of
M is defined as follows: its objects are coverings of M, its morphisms are
maps M1 — M> commuting with projection to M.

DEFINITION: A trivial covering is a covering M x S — M, where S is a
discrete set.

EXERCISE: Let M be a space with properly discontinuous action of I.
Suppose that the stabilizer group " : Str(x) is the same for all x € M. Prove
that the covering = : M — M/I" is trivial if and only if 7 has a continuous
section.
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Finite coverings
EXAMPLE: A map z — nz in a circle S is a covering.

EXAMPLE: For any non-degenerate integer matrix A € End(Z"), the corre-
sponding map of a torus T™ is a covering.

CLAIM: Let ¢ : M — M be a covering, with M connected. Then the
number of preimages |0~ 1(m)| is constant in M.

Proof: Since ¢~ 1(U) is a disconnected union of several copies of U, this
number is a locally constant function of m. =

DEFINITION: Let ¢ : M — M be a covering, with M connected. The
number |~ 1(m)| is called degree of a map o.

CLAIM: Any covering ¢ : M — M with M compact has finite degree.

Proof: Take U in such a way that go_l(U) is a disconnected union of several
copies of U, and let x € U. Then go_l(:z:) is discrete, and since M is compact,
any discrete subset of M is finite. m

4
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Homotopy lifting

LEMMA: (“Homotopy lifting lemma”) The map ¢ : M — M is a covering
iff ¢ is locally a homeomorphism, and for any path W : [0,1] — M and any
r € o~ 1(Ww(0)), there is a lifting ¥ : [0,1] — M such that ¥(0) = =z
and o(W(t)) = W(t). Moreover, the lifting is uniquely determined by the
homotopy class of W in the set of all paths connecting W(0) to W(1).

(L

Homotopy lifting

M

COROLLARY: If M is simply connected, all connected coverings M — M
are isomorphic to M. =
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Universal covering

THEOREM: Let M be a locally connected, locally simply connected space.
Then there exists a covering M — M, called universal covering, which
IS simply connected. Moreover, the universal covering is unique up to
an isomorphism of coverings.

Proof: Left as an exercise. =

CLAIM: In the above assumptions, let M be connected. Then M is uniquely
determined by a subgroup G C w1(M) of all loops which are lifted to
closed loops. Moreover, M = M /G, where M is the universal covering.

Proof: Use the homotopy lifting lemma. m
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Coverings and group actions
THEOREM: Fix a point z € M. Then the category of coverings M -Zs M
Is equivalent to the category of sets with I := 71 (M, x)-action.

Proof. Stepl: The set o~ 1(z) € M is equipped with a natural M-action: for
any loop v C M from x to itself representing g € [, its lifting gives a map
from o~ 1(x) to itself, which is clearly compatible with the multiplication in
w1 (M, x).

Step 2: Let M be the universal cover of M, and S be a set with M-action.
Consider the set S x M/IT 2+ M. This is clearly a covering over M, and
o~ 1(x) = S by construction. m



Algebraic geometry I, lecture 16 M. Verbitsky

Torsors

DEFINITION: Let G be a group. G-Torsor S is a set with free, transitive
G-action. Morphism of G-torsors is a map of G-torsors which is compatible
with G-action. Trivialization of a G-torsor is a choice of an isomorphism
S = @, where G is considered as a G-torsor with left G-action.

REMARK: To chose a trivialization is the same as to chose an element
s € S. Indeed, the map taking unit to s is uniquely extended to an isomorphism
G —S.

EXAMPLE: Affine space is a torsor over a linear space.

EXAMPLE: The set of all bases (basises) in a vector space V = R" is a
torsor over a group GL(n,R) of automorphisms of V.
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Torsors and quotient maps

EXAMPLE: Let M — M = M;,/T", where I freely acts on M;. Then
7~1(m) is I-torsor for any m € M. However, to chose a trivialization of this
torsor which depends continuously on m is the same as to chose a section,
that is, trivialize the covering.

CLAIM: Let T be G-torsor. Then T x T is naturally isomorphic to 7' x GG
as a G-torsor.

Proof: For each x,y € T', there exists a unique g € G such that y = gzx.
Therefore, the natural map T'x G — T x T mapping (x,g9) to x,gx iS an
isomorphism of G-torsors. m
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Fibered products

DEFINITION: Let X =% M, Y =% M be maps of sets. Fibered product
X XY is the set of all pairs (x,y) € X xY such that nyx(x) = 7y (y).

CLAIM: Let M7 — M and M> — M be coverings. Then the fibered prod-
uct M, x,;y M> IS also a covering.

Proof: The statement is local in M, hence it would suffice to prove it when
M; = S5; x M, where S; is a discrete set. Then M Xy My = 51 X S x M,
hence it is also a covering of M. m

CLAIM: Let M; — M = My/I", where I acts on M freely and properly
discontinuously. Then My X M1 = My X I,

Proof: Let m € M. Then =~ 1(m) is a M-torsor. Using the natural isomorphism

of M-torsors 7~ 1(m) x #=1(m) = =~ 1(m) x G, we obtain an isomorphism
My Xy M1 = My x [ of coverings. =
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Galois coverings

THEOREM: Let M -2+ M be a connected covering. Then the following
are equivalent.

(i) w1 (M) is a normal subgroup in 71 (M).
(ii) Aut (M) acts freely on the set n—1(z), for any = € M.

(iii) The fibered product M x ;M is isomorphic to M x S, where S is a discrete
set.

Proof: Left as a an exercise. m

DEFINITION: A covering which satisfies any of these assumptions is called
a Galois covering.

11
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Galois theory for coverings

DEFINITION: Let M -2 M be a covering, which is expressed as a com-
position

~

Y V AN Vg

with M and M; connected. In this case we say that M; is an intermediate
covering between M and M.

THEOREM: (main theorem of Galois theory for coverings)

Let M -2 M be a Galois covering. Then the intermediate coverings
M, — M are in bijective correspondence with the subgroups of the
automorphism group Aut,;(M), which is called the Galois group of the
covering.

12
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Galois extensions (reminder)

DEFINITION: Let [K : k] be a finite extension. It is called a Galois exten-
sion if the algebra K ®; K is isomorphic to a direct sum of several copies of
K.

EXERCISE: Let K = k[t]/(P) be a primitive, separable extension, with
deg P(t) = n.

1. Prove that [K : k] is a Galois extension if and only if P(t) has n roots
in K[t].

2. Consider an extension [K’ : K] obtained by adding all roots of all irreducible
components of P(t) € K[t]. Prove that [K’: k] is a Galois extension.

EXERCISE: Prove that [K : k] is a Galois extension if and only if Aut,(K)
acts transitively on all components of K @,k =k .

13
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Galois group (reminder)

EXERCISE: Let [K : k] be a finite extension, and G := Autp K the group
of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if
and only if the set KG of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group Aut; K is
called the Galois group of [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and Gal, K its Galois group. Then the
subgroups H C Gal;, K are iIn bijective correspondence with the inter-
mediate subfields k ¢ K ¢ K, with K obtained as the set of H-invariant
elements of K.

EXERCISE: Prove that for any ¢ = p" there exists a finite field Fq of ¢
elements. Prove that [F, : Fp] is a Galois extension. Prove that its Galois
group is cyclic of order n, and generated by the Frobenius automorphism
mapping = to xP.
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Limits and colimits of diagrams

DEFINITION: Diagram in a category C is an oriented graph with objects
of C in vertices and morphism in edges.

DEFINITION: Let S = {X;,¢;;} be a diagram in C, and Cg be a category
of pairs (object X in C, morphisms 1, : X — X, defined for all X;) making
the diagram formed by (X, X;, 15, ¢;;) commutative for each edge of S. The
terminal object in this category is called limit, or inverse limit of the diagram
S.

DEFINITION: Colimit, or direct limit is obtained from the previous defi-
nition by inverting all arrows and replacing “terminal” by “initial”.

EXAMPLE: Let I be Z or some interval in Z, and S a diagram in the

category of sets with all maps ¢; ;41 @ X; — X;4 1 injective. Then limit of
S is intersection of all X;, and colimit is their union.

15
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Products and coproducts

EXAMPLE: Let S be a diagram with two vertices X7 and X5 and no arrows.
The inverse limit of S is called product of X7 and X5, and inverse limit the
coproduct.

EXAMPLE: Products in the category of sets, vector spaces and topological
spaces are the usual products of sets, vector spaces and topological spaces
(check this).

EXAMPLE: Coproduct in the category of groups is called free product, or
amalgamated product. Coproduct of the group Z with itself is called free
group. Coproduct in the category of vector spaces is also the usual product
of vector spaces.

EXERCISE: Let ¢ be the category of coverings of M. Prove that the
product in C is fibered product over M. Prove that coproduct is a
disjoint union of coverings.

EXERCISE: Let k be a field of characteristic O and C the category of finite-
dimensional semisimple k-algebras. Prove that the coproduct in C is tensor
product over k£ and product is direct sum of fields.

16
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Fibered product (reminder)

DEFINITION: Consider the following diagram:
C
Its limit is called fibered product of A and B over C. Colimit of the diagram
A B
is called coproduct of A and B over C.

EXERCISE: Prove that the fibered product of algebraic varieties is the
same as their product in the category of algebraic varieties.

EXERCISE: Prove that the coproduct of rings A and B over C' is AQ¢ B.

Prove that the coproduct of reduced rings A and B over C in the category
of reduced rings A ®~ B/I, where [ is nilradical.
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Epimorphisms, monomorphisms, group quotients

DEFINITION: Let ¢ be a category. A morphism ¢ : X — Y is called an
epimorphism if for any two distinct ¥1,v> : Y — Z, the compositions oy
and ¢ oo are distinct. It is called a monomorphism if for any two distinct
Y1,Yo ¢ Z — X, the compositions 1 o ¢ and o o ¢ are distinct.

DEFINITION: Group action on an object X in category C is a map p
G — Moz (X, X) from the group G to Mo:(X, X) compatible with the product.
G-invariant morphism is a morphism ¢ : X — Y such that for any g € G,
one has p(g)op = . Group quotient Y = X/G is a G-invariant map X — Y
such that the composition map Mo:(Y,Z) — Nlox (X, Z) induces a bijection
between Moz (Y, Z) and the set Mo:(X, Z)C of G-invariant morphisms.

18
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Galois categories

DEFINITION: Let C be a category equipped with a functor F': C — Sets
called the fiber functor. It is called Galois category if the following holds.

(i) ¢ contains a terminal object, initial object, fibered product of
any two objects over a third, and finite coproducts (“direct sums’) of
any objects in C.

(ii) C contains finite group quotients.

(iif) Any morphism in C is a composition of an epimorphism and a
monomorphism. Any monomorphism ¢ : X — Y Is an isomorphism of X
and a direct summand of Y.

(iv) The fiber functor FF commutes with the fiber products, finite
coproducts and finite group quotients. Moreover, for any morphism u
such that F'(u) is an isomorphism, « is also an isomorphism.

DEFINITION: Let G be a group. Finite sets with G-action form a cat-
egory, with Mo:(X,Y) the set of all maps from X to Y compatible with the
action of G. Clearly, this category is a Galois category.

EXAMPLE: Category of finite coverings of M is a Galois category.
EXAMPLE: Let ©C be the category of k-algebras isomorphic to finite direct
sums of finite separable extensions of k. Then its opposite C°? is a Ga-
lois category. The fiber functor F maps [K : k] to the set of irreducible
idempotents in the algebra K @, k =k
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Finite sets with G-action

THEOREM: (Grothendieck)
Let C be a Galois category. Then C is equivalent to a category of finite
sets with action of a group G(C).

DEFINITION: Profinite completion G of a group G is a the limit of all its
finite quotient groups. A group is called profinite if it is isomorphic to its
profinite completion.

REMARK: Category of finite sets with G-action is clearly equivalent to the
category of finite sets with G-action. Indeed, the set of homomorphisms
from G to a finite group I is identified with the set of homomorphisms
from G to I'.

THEOREM: In Grothendieck’s theorem, the group G(C) can be always re-
placed by its profinite completion G(€), which is uniquely determined by
the Galois category C and its fiber functor. Moreover, G(C) is isomorphic
to the group of automorphisms of the fiber functor.

DEFINITION: The group G(C) is called the absolute Galois group of C.
20



