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Finite projection maps (reminder)

PROPOSITION: Let X C C™ be an irreducible affine subvariety, z; coordi-
nates on C", and z1, ..., 2 transcendence basis on k(X ). Then, for all A1, ..., A\
outside of the zero-set of a certain non-zero homogeneous polynomial, the
function z, € Ox is a root of a monic polynomial in the variables 2], ..., z,,
where zé = z; + \;jz2n-

Proof: Lecture 14. m

Corollary 1: (Noether’s normalization lemma, first version)

Let X C C" be an irreducible affine subvariety, z; coordinates on C", and
z1, ..., 21 transcendence basis on k(X ). Then there exists a linear coordinate
change z; := z; + Z?;’f Aj+kZj+k» Such that the projection MM, @ X — Ck
to the first £ arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection P, : X —cr1s
finite onto its image X7 (after some linear adjustment). Using induction by
n, we can assume that P, : X; — CF is also finite, hence the composition
map is finite (composition of finite morphisms is always finite, as we
have seen). =
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Noether’s normalization lemma for non-irreducible varieties
T he following version works for non-irreducible varieties.

PROPOSITION: Let X C C™ be an affine subvariety, and X its irreducible
components. Denote by k£ the maximal transcendence degree for k(X;). Then
there exists a linear coordinate change z, := zi—l—zg‘;’f Ai+kZj+k» SUCh that

the projection N, : X — C* to the first £k arguments is a finite.

Proof. Stepl: The natural projection map
W Oy — 11 Ox /m
meSpec(Oy)
IS injective by Hilbert Nullstellensatz.

Step 2: The natural projection map & . Oy — EB@XZ. IS injective, because
U factorizes through <. It is also finite, because @Xz' is finitely generated
over Ox. Clearly, [[ X; = Spec( Ox;), where [] denotes the disjoint union.

Step 3: Choose a coordinate projection Ny : C* — Ck which is finite on each

M
X;; such a projection exists by Corollary 1. The composition [[X; — X LN
Cck is finite, hence EB@XZ. is a finitely generated @Ck—module. Since @@k: IS
Noetherian, the submodile Ox C @ Ox, is also finitely generated. m
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Integral closure (reminder)

DEFINITION: Let A C B be rings. The set of all elements in B which are
integral over A is called the integral closure of A in B.

REMARK: The ring C[zq,...,2zn] is factorial by Gauss lemma, and therefore
integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a
finite extension of its field of fractions, and B the integral closure of A in K.
Then B is finitely generated as an A-module.

Proof: Proven in Lecture 12. =

EXAMPLE: Let [K : C(z1,...,2n)] be a finite extension. Then the integral
closure of C|z1,...,zn] INn X is finitely generated.

REMARK: Since the normalization map is birational, it is an isomorphism
outside of a divisor. Recall that divisor S C M is an irreducible component
of a subvariety given by an equation f = 0, where f € O, is a regular function
which is not identically O on any irreducible component of M.
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Normalization (reminder)

COROLLARY: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then A is finitely generated.

Proof: The variety X admits a finite, dominant map to Ck. Let A be the
integral closure of C[z1,...,zn] in k(X); it is a finitely generated algebra by the
previous theorem. Then A is an integrally closed ring containing ©Ox and with
the same field of fractions. Since A D Oy D C|z1,...,zn], We obtain that A is
finite over Oy; this gives A= A. m

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then X := Spec(A4) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if
for any finite, birational ¢ : X' — X, the map ¢ is an isomorphism.
Indeed, in this case Oy, D Ox is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X' — X
such that for any other finite, birational ¢ : X’ — X', the map ¢ is an
isomorphism. In particular, any birational, finite map X' — X with X’

normal IS a normalization. =
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Noether’s normalization lemma (reminder)

THEOREM: (Noether’'s normalization lemma, second version)

Let X C C" be an irreducible affine subvariety, and k the transcendence degree
of X (number of elements in the transcendence basis of [k(X) : C]). Then
there exists a variety X7 ¢ CF*+1, given by a polynomial equation P(t) = O,
where P(t) is @ monic polynomial with coefficients in C[zq,..., 2], such that
X is isomorphic to the normalization of X;.

Proof. Stepl: Let X C C", with coordinates zq,...,zn, and z1,...,2z; a tran-
scendence basis in k(X). Using the same argument as used to prove the
primitive element theorem, we find a primitive element + = Z?=k+1 A;Z;

Step 2: Let li4, be the projection to the coordinates zq,..., 2, 7, chosen
in Step 1, and X; its image, that is, X7 = Spec(B), where B C Oy is the
subalgebra generated by z1,...,2;, 7. After an appropriate linear change of
coordinates, we can assume that Mgy, : X — X is finite (Corollary 1) and
birational (Step 1). Also, Ox, = Clzy, ..., z, t]/(P) where P(zq,...,z,t) is the
monic polynomial constructed in Corollary 1.

Step 3: The projection X — X4 is birational and finite, and X is normal.
Therefore, X is normalization of X1. =
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Multi-valued functions

DEFINITION: Define a complex manifold as a manifold equipped with a
sheaf of functions which is locally isomorhic to a an open ball in C" equipped
with the sheaf of holomorphic functions. This is the same as a manifold
M with an atlas {U;}, with each open subset U, C M identified with an
open ball in C"*, and complex analytic transition functions.

REMARK: Define complex variety as a subvariety Z C M in a complex
manifold given by a collection of complex analytic equation.

DEFINITION: Multi-valued function on M is a closed, irreducible complex
subvariety Z € M x C such that the projection Z — M is locally a diffeomor-
phism outside of a closed, nowhere dense subset in Z. The set Z is called
the graph of the multi-valued function.

EXAMPLE: Logarithm is a multi-valued function on C. Indeed, let Z
be the graph of exponent y = % in C2. The projection to = expresses all
branches of logarithm x = logy as functions of y.

EXAMPLE: y — ,/y Is a multi-valued function. Indeed, the graph of
y = x° projected to z gives both branches of VY-
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Inverse/implicit function theorem (reminder)

THEOREM: (“Inverse function theorem”)

Let U,V C R"™ be open subsets, and f : U — V a differentiable map. Sup-
pose that the differential of f is everywhere invertible. Then f is locally a
diffeomorphism.

DEFINITION: Let U C R™ V C R"™ be open subsets, and f: U—V a
smooth function. A point x € U is a critical point of f if the differential
D,f . R™ —R"™ is not surjective. Critical value is an image of a critical
point. Regular value is a point of V which is not a critical value.

THEOREM: (“Implicit function theorem’)
Let U C R™, V C R"™ be open subsets, f: U—V a smooth function, and
y € V a regular value of f. Then f~1(y) is a smooth submanifold of U.
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Multi-valued functions and branched covers

THEOREM: Consider a subvariety Z ¢ C**t1 given by a monic polynomial
equation P(t) = 0, with P(t) € O¢n[t]. Assume that P(t) is irreducible. Then
Z 1s a graph of a multi-valued function. Moreover, Z is smooth, and the
projection of Z to C" (to the first n coordinates) is a diffeomorphism at (z,t)
if and only if P/(z2) # 0.

Proof. Stepl: We shall represent points of C**t1 by pairs (z,t), with
z = (21,...,2n). Let # : Z — C" be the standard projection along ¢t. By
the implicit function theorem, Z c C*T1 is a smooth submanifold in a
neighbourhood of any point (z,t) € Z, with z € C* whenever the differ-
ential dP : C"t1 — C is surjective (non-zero) at (z,t).

Step 2: This implies that Z is smooth outside of an algebraic subset of all
(z,t) € C*T1 such that dP(z,t)(&,7) = 0, for all ¢ € (d/dzq,...,d/dzn), and
T € {d/dt). Let P(z,t) =t"+ Z?:_é t'a;(z). Then

n—1 n—1
dP(z,t) = nt" 1dt + > tdai(z) + ) it" La,;(2)dt.
For |t| > 0, the leading term nt"~1dt + t" 1da,_1(2) dominates the rest,
and it is non-zero, because its dt component iIs non-zero.
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Multi-valued functions and branched covers (2)

THEOREM: Consider a subvariety Z C cn+l given by a monic polynomial
equation P(t) = 0, with P(t) € O¢n[t]. Assume that P(t) is irreducible. Then
Z 1s a graph of a multi-valued function. Moreover, Z is smooth, and the
projection of Z to C"™ (to the first n coordinates) is a diffeomorphism at (z,t)
if and only if P/(2) # 0.

Step 3: Let z € Z be a smooth point, and (¢,7) € T.Z. Then n: W — C"
is invertible whenever W does not contain a vector (0, 7), equivalently, when
dP(z,t)(0,7) # 0. This is equivalent to %ﬁ’” = 0.

Step 4: Let Pl/(z,t) = %. To prove that Z defines a multi-valued
function, it remains to show that P/(z,t) is not identically zero on Z. Since
P(z,t) isirreducible, and Ocn+1 is factorial, the ring % has no zero divisors.
Then Hilbert Nullstellensatz would imply that any function f & @Cn+1 which
vanishes on Z is divisible by P(z,t). Then P/(z,t) does not vanish on Z,

because it is polynomial of smaller degree. m
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Symmetric polynomials

DEFINITION: Symmetric polynomial P(zq,...,zn) € Cl[z1,...,2n] is @ poly-
nomial which is invariant with respect to the symmetric group 2, acting on
Clz1, ..., zn] in a usual way.

DEFINITION: Consider the polynomial P(z1,...,2zn,t) = [[l'—1(t + 2;) =
S e;tt, with e; € C[z1, ..., zn]. Then e; are called elementary symmetric poly-

nomials on zq, ..., zn.

THEOREM: Every symmetric polynomial on z1,...,z, can be polynomi-
ally expressed through the elementary symmetric polynomials.

Proof:. Left as an exercise. =
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Discriminant of a polynomial

DEFINITION: Consider the symmetric polynomial [[;«;(z; — 2z;). Discrimi-
nant of the polynomial P(z1,...,2n,t) 1= [} 1 (t—2;) is [[;«;(# —z;) considered
as a polynomial of its coefficients.

EXAMPLE: Discriminant of the quadratic polynomial t24bt+c is b2 —4c.

EXAMPLE: Discriminant of the cubic polynomial t3 + bt2 + ct + d is
b2c2 — 4¢3 — 4b3d — 27d? + 18bcd.

CLAIM: A polynomial has no multiple roots if and only if its discrimi-
nant iIs non-zero. m

Corollary 1: Let P(t) € k[t] be a polynomial over an algebraically closed field,
and D its discriminant. Then the derivative P'(t) does not vanish on all
roots of ¢ if and only if D £ 0.

Proof: Let a be a root of P. Then P(t) = Py(t)(t—«a), and P'(t) = PL(t)(t—
a) + Po(t). Therefore, P'(a) = 0 if and only if P,(t) = 0. This is equivalent
to P(t) being divisible by (t — a)2. =
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Discriminant and ramified coverings

THEOREM: Consider a subvariety Z ¢ C*1T1 given by a monic polynomial
equation P(t) = 0 of degree d, with P(t) € Clz1,...,zn][t], and let 7 : Z — C"
be the projection to the coordinates z1,...,2zn. Assume that P(t) is irreducible.
Denote by D(z) the discriminant of P(¢), considered as a polynomial function
on (z1,...,2n), and let U C C™ be the set of all z € C" such that D(z) # O.
Then the intersection Z n 7=~ 1(U) is smooth and the projection = :
ZnNnn 1(U) — U is a d-sheeted covering.

Proof. Stepl: By Corollary 1, for any z € U, the polynomials P(z,t) and
P'(z,t) have no common roots. Therefore, dP(z,t) # 0 on ZN =~ Y(U), and
the set Z = {(z,t) | P(z,t) = 0} is smooth outside of zeros of D(z).

Step 2: Let z € ZNna Y(U) and (¢, 7) € T,pZ. Then m: T, nZ —C"is
invertible whenever T(, ;,y does not contain a vector (0, 7), equivalently, when

L : dP(z,t)
dP(2,t)(0,7) # 0. This is equivalent to =~ # 0.

Step 3: The map n: Zn=x Y(U) — U is locally a diffeomorphism, and each
point has precisely d preimages. Then it is a covering (prove it). =
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Every algebraic variety is a ramified cover

Comparing this with the Noether normalization lemma, we obtain the follow-
ing theorem.

COROLLARY: Let X be an algebraic variety. Then there exists a birational,
finite map X — Z, a divizor D C Z, and a divisor D1 C C", such that Z\D
IS a d-sheeted covering of C""\D{. =

COROLLARY: Every algebraic variety X over C has a smooth point.
Moreover, non-smooth points of X are contained in a proper algebraic
subvariety of X.

Proof: Indeed, every birational map is an isomorphism outside of a
divisor. m
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