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Finite projection maps (reminder)

PROPOSITION: Let X ⊂ Cn be an irreducible affine subvariety, zi coordi-

nates on Cn, and z1, ..., zk transcendence basis on k(X). Then, for all λ1, ..., λk
outside of the zero-set of a certain non-zero homogeneous polynomial, the

function zn ∈ OX is a root of a monic polynomial in the variables z′1, ..., z
′
k,

where z′i := zi + λizn.

Proof: Lecture 14.

Corollary 1: (Noether’s normalization lemma, first version)

Let X ⊂ Cn be an irreducible affine subvariety, zi coordinates on Cn, and

z1, ..., zk transcendence basis on k(X). Then there exists a linear coordinate

change z′i := zi +
∑n−k
j=1 λj+kzj+k, such that the projection Πk : X −→ Ck

to the first k arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection Pn : X −→ Cn−1 is

finite onto its image X1 (after some linear adjustment). Using induction by

n, we can assume that Pk : X1 −→ Ck is also finite, hence the composition

map is finite (composition of finite morphisms is always finite, as we

have seen).
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Noether’s normalization lemma for non-irreducible varieties

The following version works for non-irreducible varieties.

PROPOSITION: Let X ⊂ Cn be an affine subvariety, and Xi its irreducible
components. Denote by k the maximal transcendence degree for k(Xi). Then
there exists a linear coordinate change z′i := zi+

∑n−k
j=1 λj+kzj+k, such that

the projection Πk : X −→ Ck to the first k arguments is a finite.

Proof. Step1: The natural projection map

Ψ : OX −→
∏

m∈Spec(OX)

OX/m

is injective by Hilbert Nullstellensatz.

Step 2: The natural projection map Φ : OX −→
⊕

OXi is injective, because
Ψ factorizes through Φ. It is also finite, because OXi is finitely generated
over OX. Clearly,

∐
Xi = Spec(

⊕
OXi), where

∐
denotes the disjoint union.

Step 3: Choose a coordinate projection Πk : Cn −→ Ck which is finite on each

Xi; such a projection exists by Corollary 1. The composition
∐
Xi −→X

Πk−→
Ck is finite, hence

⊕
OXi is a finitely generated OCk-module. Since OCk is

Noetherian, the submodile OX ⊂
⊕

OXi is also finitely generated.
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Integral closure (reminder)

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are

integral over A is called the integral closure of A in B.

REMARK: The ring C[z1, ..., zn] is factorial by Gauss lemma, and therefore

integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a

finite extension of its field of fractions, and B the integral closure of A in K.

Then B is finitely generated as an A-module.

Proof: Proven in Lecture 12.

EXAMPLE: Let [K : C(z1, ..., zn)] be a finite extension. Then the integral

closure of C[z1, ..., zn] in X is finitely generated.

REMARK: Since the normalization map is birational, it is an isomorphism

outside of a divisor. Recall that divisor S ⊂M is an irreducible component

of a subvariety given by an equation f = 0, where f ∈ OM is a regular function

which is not identically 0 on any irreducible component of M .
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Normalization (reminder)

COROLLARY: Let X be an affine variety, and Â the integral closure of its
ring of regular functions. Then Â is finitely generated.

Proof: The variety X admits a finite, dominant map to Ck. Let A be the
integral closure of C[z1, ..., zn] in k(X); it is a finitely generated algebra by the
previous theorem. Then A is an integrally closed ring containing OX and with
the same field of fractions. Since A ⊃ OX ⊃ C[z1, ..., zn], we obtain that A is
finite over OX; this gives A = Â.

DEFINITION: Let X be an affine variety, and Â the integral closure of its
ring of regular functions. Then X̃ := Spec(Â) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if
for any finite, birational ϕ : X ′ −→X, the map ϕ is an isomorphism.
Indeed, in this case OX ′ ⊃ OX is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X ′ −→X

such that for any other finite, birational ϕ : X ′′ −→X ′, the map ϕ is an
isomorphism. In particular, any birational, finite map X ′ −→X with X ′

normal is a normalization.
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Noether’s normalization lemma (reminder)

THEOREM: (Noether’s normalization lemma, second version)
Let X ⊂ Cn be an irreducible affine subvariety, and k the transcendence degree
of X (number of elements in the transcendence basis of [k(X) : C]). Then
there exists a variety X1 ⊂ Ck+1, given by a polynomial equation P (t) = 0,
where P (t) is a monic polynomial with coefficients in C[z1, ..., zk], such that
X is isomorphic to the normalization of X1.

Proof. Step1: Let X ⊂ Cn, with coordinates z1, ..., zn, and z1, ..., zk a tran-
scendence basis in k(X). Using the same argument as used to prove the
primitive element theorem, we find a primitive element τ =

∑n
i=k+1 λizi

Step 2: Let Πk+1 be the projection to the coordinates z1, ..., zk, τ , chosen
in Step 1, and X1 its image, that is, X1 = Spec(B), where B ⊂ OX is the
subalgebra generated by z1, ..., zk, τ . After an appropriate linear change of
coordinates, we can assume that Πk+1 : X −→X1 is finite (Corollary 1) and
birational (Step 1). Also, OX1

= C[z1, ..., zk, t]/(P ) where P (z1, ..., zk, t) is the
monic polynomial constructed in Corollary 1.

Step 3: The projection X −→X1 is birational and finite, and X is normal.
Therefore, X is normalization of X1.
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Multi-valued functions

DEFINITION: Define a complex manifold as a manifold equipped with a
sheaf of functions which is locally isomorhic to a an open ball in Cn equipped
with the sheaf of holomorphic functions. This is the same as a manifold
M with an atlas {Ui}, with each open subset Ui ⊂ M identified with an
open ball in Cn, and complex analytic transition functions.

REMARK: Define complex variety as a subvariety Z ⊂ M in a complex
manifold given by a collection of complex analytic equation.

DEFINITION: Multi-valued function on M is a closed, irreducible complex
subvariety Z ⊂M ×C such that the projection Z −→M is locally a diffeomor-
phism outside of a closed, nowhere dense subset in Z. The set Z is called
the graph of the multi-valued function.

EXAMPLE: Logarithm is a multi-valued function on C. Indeed, let Z

be the graph of exponent y = ex in C2. The projection to x expresses all
branches of logarithm x = log y as functions of y.

EXAMPLE: y −→√y is a multi-valued function. Indeed, the graph of
y = x2 projected to x gives both branches of

√
y.
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Inverse/implicit function theorem (reminder)

THEOREM: (“Inverse function theorem”)

Let U, V ⊂ Rn be open subsets, and f : U −→ V a differentiable map. Sup-

pose that the differential of f is everywhere invertible. Then f is locally a

diffeomorphism.

DEFINITION: Let U ⊂ Rm, V ⊂ Rn be open subsets, and f : U −→ V a

smooth function. A point x ∈ U is a critical point of f if the differential

Dxf : Rm −→ Rn is not surjective. Critical value is an image of a critical

point. Regular value is a point of V which is not a critical value.

THEOREM: (“Implicit function theorem”)

Let U ⊂ Rm, V ⊂ Rn be open subsets, f : U −→ V a smooth function, and

y ∈ V a regular value of f . Then f−1(y) is a smooth submanifold of U.
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Multi-valued functions and branched covers

THEOREM: Consider a subvariety Z ⊂ Cn+1 given by a monic polynomial
equation P (t) = 0, with P (t) ∈ OCn[t]. Assume that P (t) is irreducible. Then
Z is a graph of a multi-valued function. Moreover, Z is smooth, and the
projection of Z to Cn (to the first n coordinates) is a diffeomorphism at (z, t)
if and only if P ′(z) 6= 0.

Proof. Step1: We shall represent points of Cn+1 by pairs (z, t), with
z = (z1, ..., zn). Let π : Z −→ Cn be the standard projection along t. By
the implicit function theorem, Z ⊂ Cn+1 is a smooth submanifold in a
neighbourhood of any point (z, t) ∈ Z, with z ∈ Cn whenever the differ-
ential dP : Cn+1 −→ C is surjective (non-zero) at (z, t).

Step 2: This implies that Z is smooth outside of an algebraic subset of all
(z, t) ∈ Cn+1 such that dP (z, t)(ξ, τ) = 0, for all ξ ∈ 〈d/dz1, ..., d/dzn〉, and
τ ∈ 〈d/dt〉. Let P (z, t) = tn +

∑n−1
i=0 t

iai(z). Then

dP (z, t) = ntn−1dt+
n−1∑
i=0

tidai(z) +
n−1∑
i=0

iti−1ai(z)dt.

For |t| � 0, the leading term ntn−1dt+ tn−1dan−1(z) dominates the rest,
and it is non-zero, because its dt component is non-zero.
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Multi-valued functions and branched covers (2)

THEOREM: Consider a subvariety Z ⊂ Cn+1 given by a monic polynomial

equation P (t) = 0, with P (t) ∈ OCn[t]. Assume that P (t) is irreducible. Then

Z is a graph of a multi-valued function. Moreover, Z is smooth, and the

projection of Z to Cn (to the first n coordinates) is a diffeomorphism at (z, t)

if and only if P ′(z) 6= 0.

Step 3: Let z ∈ Z be a smooth point, and (ξ, τ) ∈ TzZ. Then π : W −→ Cn

is invertible whenever W does not contain a vector (0, τ), equivalently, when

dP (z, t)(0, τ) 6= 0. This is equivalent to dP (z,t)
dt 6= 0.

Step 4: Let P ′(z, t) := dP (z,t)
dt . To prove that Z defines a multi-valued

function, it remains to show that P ′(z, t) is not identically zero on Z. Since

P (z, t) is irreducible, and OCn+1 is factorial, the ring
OCn+1

(P ) has no zero divisors.

Then Hilbert Nullstellensatz would imply that any function f ∈ OCn+1 which

vanishes on Z is divisible by P (z, t). Then P ′(z, t) does not vanish on Z,

because it is polynomial of smaller degree.
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Symmetric polynomials

DEFINITION: Symmetric polynomial P (z1, ..., zn) ∈ C[z1, ..., zn] is a poly-

nomial which is invariant with respect to the symmetric group Σn acting on

C[z1, ..., zn] in a usual way.

DEFINITION: Consider the polynomial P (z1, ..., zn, t) :=
∏n
i=1(t + zi) =∑

eit
i, with ei ∈ C[z1, ..., zn]. Then ei are called elementary symmetric poly-

nomials on z1, ..., zn.

THEOREM: Every symmetric polynomial on z1, ..., zn can be polynomi-

ally expressed through the elementary symmetric polynomials.

Proof: Left as an exercise.

11



Algebraic geometry I, lecture 17 M. Verbitsky

Discriminant of a polynomial

DEFINITION: Consider the symmetric polynomial
∏
i 6=j(zi − zj). Discrimi-

nant of the polynomial P (z1, ..., zn, t) :=
∏n
i=1(t−zi) is

∏
i 6=j(zi−zj) considered

as a polynomial of its coefficients.

EXAMPLE: Discriminant of the quadratic polynomial t2+bt+c is b2−4c.

EXAMPLE: Discriminant of the cubic polynomial t3 + bt2 + ct + d is

b2c2 − 4c3 − 4b3d− 27d2 + 18bcd.

CLAIM: A polynomial has no multiple roots if and only if its discrimi-

nant is non-zero.

Corollary 1: Let P (t) ∈ k[t] be a polynomial over an algebraically closed field,

and D its discriminant. Then the derivative P ′(t) does not vanish on all

roots of t if and only if D 6= 0.

Proof: Let α be a root of P . Then P (t) = Pα(t)(t−α), and P ′(t) = P ′α(t)(t−
α) + Pα(t). Therefore, P ′(α) = 0 if and only if Pα(t) = 0. This is equivalent

to P (t) being divisible by (t− α)2.

12



Algebraic geometry I, lecture 17 M. Verbitsky

Discriminant and ramified coverings

THEOREM: Consider a subvariety Z ⊂ Cn+1 given by a monic polynomial

equation P (t) = 0 of degree d, with P (t) ∈ C[z1, ..., zn][t], and let π : Z −→ Cn

be the projection to the coordinates z1, ..., zn. Assume that P (t) is irreducible.

Denote by D(z) the discriminant of P (t), considered as a polynomial function

on (z1, ..., zn), and let U ⊂ Cn be the set of all z ∈ Cn such that D(z) 6= 0.

Then the intersection Z ∩ π−1(U) is smooth and the projection π :

Z ∩ π−1(U)−→ U is a d-sheeted covering.

Proof. Step1: By Corollary 1, for any z ∈ U , the polynomials P (z, t) and

P ′(z, t) have no common roots. Therefore, dP (z, t) 6= 0 on Z ∩ π−1(U), and

the set Z = {(z, t) | P (z, t) = 0} is smooth outside of zeros of D(z).

Step 2: Let z ∈ Z ∩ π−1(U) and (ξ, τ) ∈ T(z,t)Z. Then π : T(z,t)Z −→ Cn is

invertible whenever T(z,t) does not contain a vector (0, τ), equivalently, when

dP (z, t)(0, τ) 6= 0. This is equivalent to dP (z,t)
dt 6= 0.

Step 3: The map π : Z ∩π−1(U)−→ U is locally a diffeomorphism, and each

point has precisely d preimages. Then it is a covering (prove it).
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Every algebraic variety is a ramified cover

Comparing this with the Noether normalization lemma, we obtain the follow-

ing theorem.

COROLLARY: Let X be an algebraic variety. Then there exists a birational,

finite map X −→ Z, a divizor D ⊂ Z, and a divisor D1 ⊂ Cn, such that Z\D
is a d-sheeted covering of Cn\D1.

COROLLARY: Every algebraic variety X over C has a smooth point.

Moreover, non-smooth points of X are contained in a proper algebraic

subvariety of X.

Proof: Indeed, every birational map is an isomorphism outside of a

divisor.
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