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Every algebraic variety is a ramified cover (reminder)

COROLLARY: Let X be an algebraic variety. Then there exists a birational,

finite map X −→ Z, a divizor D ⊂ Z, and a divisor D1 ⊂ Cn, such that Z\D
is a d-sheeted covering of Cn\D1.

COROLLARY: Every algebraic variety X over C has a smooth point.

Moreover, non-smooth points of X are contained in a proper algebraic

subvariety of X.

Proof: Indeed, every birational map is an isomorphism outside of a

divisor.
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Finite, dominant maps are ramified covers

DEFINITION: A map f : M1 −→M2 of smooth (or complex) manifolds is

called étale if it is locally a diffeomorphism, that is, each point x ∈M1 has a

naighbourhood U 3 x such that f : U −→ f(U) is a diffeomorphism.

CLAIM: Let M be an irreducible affine variety, and π : M −→ Cn the finite,

dominant map constructed in Noether’s normalization lemma. Then π is

étale outside of a proper algebraic subvariety Z ⊂M.

Proof. Step1: Using the primitive element theorem as in Lecture 16, we can

represent the map π : M −→ Cn as a composition M
ψ−→ M1

π1−→ Cn, where

ψ is birational, π1 : M1 −→ Cn is a finite map, and M1 ⊂ Cn+1 is defined by a

polynomial equation P (t) = 0, where P (t) ∈ OCn[t] is a monic polynomial.

Step 2: As shown in Lecture 17, π1 is a covering outside of the set of

zeros of discriminant D(P ) of P . Let Z1 be the set of points x ∈ M such

that D(P )(π(x)) = 0, and Z2 be the divisor in M such that ψ defines an

isomorphism of Z2 to its image. Then π : M −→ Cn is étale in M\Z, where

Z = Z1 ∪ Z2.
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Transcendental dimension

REMARK: Let M be an irreducible affine variety, and π : M −→ Cn the

finite, dominant map constructed in Noether’s normalization lemma. By

construction, n is equal to the transcendence degree of [k(M) : C].

DEFINITION: Let M be an irreducible affine variety. Dimension of M

is dimension of the smooth part of M , considered as a complex manifold.

Transcendental dimension of M is the transcendence degree of [k(M) : C].

PROPOSITION: Dimension of M is equal to its transcendental dimen-

sion.

Proof: Let π : M −→ Cn be the finite, dominant map. Then k(M) is a

finite extension of C[z1, ..., zn], hence n is equal to the transcendence degree

of [k(M) : C]. On the other hand, π is étale outside of a proper algebraic

subset, hence dimM = n as well.
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Inverse/implicit function theorem (reminder)

THEOREM: (“Inverse function theorem”)

Let U, V ⊂ Rn be open subsets, and f : U −→ V a differentiable map. Sup-

pose that the differential of f is everywhere invertible. Then f is locally a

diffeomorphism.

DEFINITION: Let U ⊂ Rm, V ⊂ Rn be open subsets, and f : U −→ V a

smooth function. A point x ∈ U is a critical point of f if the differential

Dxf : Rm −→ Rn is not surjective. Critical value is an image of a critical

point. Regular value is a point of V which is not a critical value.

THEOREM: (“Implicit function theorem”)

Let U ⊂ Rm, V ⊂ Rn be open subsets, f : U −→ V a smooth function, and

y ∈ V a regular value of f . Then f−1(y) is a smooth submanifold of U.
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Dimension of a divisor

DEFINITION: Let X be an affine variety, and f ∈ OX a regular function
which does not vanish on any of irreducible components of X. The zero set
of f is called a principal divisor on X. Its irreducible components are called
divisors on X.

Proposition 1: Let D be an irreducible divisor in Cn. Then dimD = n−1.

Proof. Step1: Let P (z) ∈ OCn = C[z1, ..., zn] be a polynomial. Then the
irreducible components of the polynomial P correspond to irreducible com-
ponents of the zero divizor of P . Therefore, an irreducible divisor D ⊂ Cn
is always obtained as the zero set of an irreducible polynomial P (z).

Step 2: For some i (say, i = 1), the derivative Q := dP
dz1

is non-zero. Since
degQ < degP , the polynomial Q does belong to the ideal (P ) generated by
P . By Hilbert Nullstellenzatz, any polynomial which vanishes in D belongs to
(P ). Therefore, Q is non-zero at some points of D. In these points, the
differential dP is surjective, hence D is smooth.

Step 3: Let z ∈ D be a point where Q 6= 0. The coordinate projection π to
(z2, z3, ..., zn) is an isomorphism on ker dP

∣∣∣TzD , because dP
dz1
6= 0, and ker dπ =

(t,0,0, ...,0). Therefore, π is a diffeomorphism in a neighbourhood of
z ∈ D.
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Krull dimension

REMARK: Length of a chain A1 ⊂ A2 ⊂ A3 ⊂ ... ⊂ An is n− 1, that is, the

number of ⊂ signs.

DEFINITION: Krull dimension of a ring A is the maximal possible length

of a chain of prime ideals p1 ( p2... ( pn ( A

DEFINITION: Krull dimension of a variety X is the maximal possible length

of a chain of non-empty, irreducible, distinct subvarieties X1 ( ... ( Xn.

Today we are going to prove the following theorem

THEOREM: For any affine variety, its dimension is equal to its Krull

dimension.
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Local rings and Nakayama lemma

DEFINITION: A ring A is called local if it has only one maximal ideal.

DEFINITION: Let p ⊂ A be a prime ideal, and S ⊂ A its complement.

Localization of A in p is A[S−1].

CLAIM: Localization Ap of A in p is local.

Proof: Any x ∈ A\p is invertible, hence p is a maximal ideal, containing all

ideals in A.

THEOREM: (Nakayama’s lemma for local rings)

Let A be a Noetherian local ring, p its maximal ideal, and M a finitely gener-

ated A-module. Then M ) pM .

Proof: For any non-trivial ideal a ⊂ A, Nakayama lemma claims that

aM = M implies that (1 + a)M = 0, for some a ∈ a. For any a ∈ p,

1 + a is invertible, hence M = 0.
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Finite ring extensions and prime ideals: going down

DEFINITION: Let B ⊃ A be a ring, which is finitely generated as an A-

module. In this case, we say that B is finite extension of A.

Lemma 1: Let B ⊃ A be a extension of a ring A without zero divisors, and

q ⊂ B a non-zero prime ideal. Them p := q ∩A is nonzero.

Proof: Consider the ring Ap = A[S−1] localized in the set S all s /∈ p, and let

Bp := B[S−1]. Then Bp ⊃ Ap is a finite Ap-module. If p = 0, Ap is a field, and

then Bp is also a field as follows from the classification of semisimple Artinian

algebras over a field. However, Bp contains a non-trivial ideal q 6= 0, hence it

cannot be a field.
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Finite ring extensions and prime ideals: going up

Lemma 2: Let B ⊃ A be a finite extension of a Noetherian ring A, and p ⊂ A
a prime ideal. Then there exists finitely many prime ideals q ⊂ B such

that p = q ∩A.

Proof. Step1: As above, consider the ring Ap = A[S−1] localized in the set

S all s /∈ p. The kernel of the natural map A−→Ap/p is p. Indeed, the map

A/p−→Ap/p has no kernel because p is prime, and the kernel of A−→A/p is

p.

Step 2: Let Bp := B[S−1]. By Nakayama’s lemma, Bp 6= pBp. Then Bp/p =

Bp⊗AAp/p is a non-zero, finite-dimensional ring over the field Ap/p. Let q̃ be

any prime ideal in Bp/p (there are finitely many prime ideals by classification

of Artinian algebras), and let q be the preimage of q̃ inder the natural map

B −→Bp/p. Then q is prime, and q∩A is mapped to 0 under the natural map

A−→Ap/p, hence q ∩A = p (Step 1).
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Cohen-Seidenberg theorems

THEOREM: (Cohen-Seidenberg theorem)

Let B ⊃ A be a finite Noetherian ring over A, and q1 ( q2... ( qn ( B be a

chain of prime ideals. Denote by pi the ideal pi ∩ A ⊂ A; it is clearly prime.

Then

(i) p1 ( p2... ( pn ( A (distinct prime ideals remain distinct)

(ii) Any chain of prime ideals p1 ( p2... ( pn ( A is obtained this way.

Proof of (i): Suppose that pi = pi−1. Replacing A by A/pi−1 and B by

B/qi−1, we reduce the statement of (i) to Lemma 1.

Proof of (ii): Existence of q1 follows from Lemma 2. Using induction, we

may assume that q1 ( q2 ( ... ( qr is already chosen. To prove the induction

step, we need to chose a prime ideal qr+1 in B/qr such that qr+1∩A/qr = pr+1.

This is again Lemma 2.
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Irving S. Cohen and Abraham Seidenberg

Irving S. Cohen and Abraham Seidenberg, ”Prime ideals and integral depen-

dence”, 1946, Bull. Amer. Math. Soc. 52 (4): 252-261

Irvin Sol Cohen
(1917-1955)

Abraham Seidenberg
(1916-1988)
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Krull dimension is invariant under finite morphisms

COROLLARY: Let X −→ Y be a finite, dominant morphism of irreducible

affine varieties. Then the Krull dimension of X is equal to Krull dimen-

sion of Y .

Proof: Any chain of prime ideals in OY ⊂ OX can be lifted to OX by Cohen-

Seidenberg; any chain of distinct prime ideals in OX intersected with OY gives

a chain of distinct prime ideals in OY , again by Cohen-Seidenberg.
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The Krull dimension and the usual dimension

THEOREM: For any affine variety X, its dimension dimX is equal to its

Krull dimension dimkX.

Proof. Step1: Using a finite, dominant map to Cn and the corollary above,

we may assume that X = Cn. Indeed, a finite map to Cn does not change

the Krull dimension and the usual dimension, as shown above.

Step 2: Let D be an irreducible divisor in Cn. The ideal I of polynomials

vanishing in D is principal, I = (P ), where (P ) is an irreducible polynomial.

Therefore, there is no intermediate prime ideal (P ) ) q ) 0. Conversely,

for any prime ideal I ⊂ OCn, and any P ∈ I, at least one of the irreducible

components Pi of P is contained in I, hence I ) (Pi) ) 0. Therefore, in

the maximal chain 0 ( p1 ( p2... if prime ideals in OCn, the ideal p1 is

principal.

Step 3: We obtained that dimk Cn = 1 + dimkD. Using induction in dimX,

we may assume that dimY = dimk Y for any affine variety of dimension < n.

Then dimkD = dimD = n−1 (Proposition 1), giving dimk Cn = dimD+1 = n.
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