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Complex projective space

DEFINITION: Let V = Cn be a complex vector space equipped with a Her-

mitian form h, and U(n) the group of complex endomorphisms of V preserving

h. This group is called the complex isometry group.

DEFINITION: Complex projective space CPn is the space of 1-dimensional

subspaces (lines) in Cn+1.

REMARK: Since the group U(n + 1) of unitary matrices acts on lines in

Cn+1 transitively, CPn is a homogeneous space, CPn = U(n+1)
U(1)×U(n), where

U(1)× U(n) is a stabilizer of a line in Cn+1.

EXAMPLE: CP1 is S2.
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Homogeneous and affine coordinates on CPn

DEFINITION: We identify CP1 with the set of n + 1-tuples x0 : x1 : ... : xn
defined up to equivalence x0 : x1 : ... : xn ∼ λx0 : λx1 : ... : λxn, for each

λ ∈ C∗. This representation is called homogeneous coordinates. Affine

coordinates in the chart xk 6= 0 are are x0
xk

: x1
xk

: ... : 1 : ... : xn
xk

. The space

CPn is a union of n+ 1 affine charts identified with Cn, with the complement

to each chart identified with CPn−1.

CLAIM: Complex projective space is a complex manifold, with the atlas given

by affine charts Ak =
{
x0
xk

: x1
xk

: ... : 1 : ... : xnxk

}
, and the transition functions

mapping the set

Ak ∩ Al =

{
x0

xk
:
x1

xk
: ... : 1 : ... :

xn

xk

∣∣∣∣∣ xl 6= 0

}
to

Al ∩ Ak =

{
x0

xl
:
x1

xl
: ... : 1 : ... :

xn

xl

∣∣∣∣∣ xk 6= 0

}
as a multiplication of all terms by the scalar xk

xl
.
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Eigenvectors of commuting operators

LEMMA: Let A,B ∈ EndV be commuting operators on a complex vector

space V over an algebraically closed field. Then A and B have a common

eigenvector.

Proof: Let Vα be an eigenspace of A with eigenvalue α. For each v ∈ Vα, one

has AB(v) = BA(v) = B(αv) = αB(v). Therefore, B(Vα) ⊂ Vα. Now, any

eigenvector of B in Vα is a common eigenvector.

LEMMA: Let A1, ..., An be a family of commuting operators on a complex

vector space V . Then A1, ..., An have a common eigenvector.

Proof: Using induction, we may assume that the operators A1, ..., Ak have a

common eigenvector with eigenvalues α1, ..., αk. The corresponding eigenspace

W is Ak+1-invariant, hence Ak+1 has an eigenvector in W . This eigenvector

is a common eigenvector for A1, ..., Ak, Ak+1. Using induction in k, we obtain

a common eigenvector for all Ai.
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Representations of finite commutative groups

THEOREM: Let V be a complex representation of a commutative finite

group G. Then V is a direct sum of 1-dimensional G-representations.

Proof: By the previous lemma, G has a common eigenvector, hence there

exists a G-invariant 1-dimensional subspace W ⊂ V . Choosing a G-invariant

Hermitian structure, we obtain a G-invariant decomposition V = W ⊕
W⊥. Using induction in dimV , we may assume that the orthogonal com-

plement W⊥ is a a direct sum of 1-dimensional G-representations, hence the

same is true for V = W ⊕W⊥.
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Algebraic groups

DEFINITION: Let G ⊂ Cn be an affine variety, equipped with a group struc-

ture, that is, the map G × G
µ−→ G of group multiplication and the map

G
ι−→ G of taking inverse satisfying the group axioms. We say that G is an

algebraic group if the µ and ι are givem by algebraic morphisms, that is,

expressed polynomially.

EXAMPLE: The space C∗ := C\0 is given as an algebraic subset of C2 given

by equation xy = 1. We define the group structure using the multiplication

map µ((x1, y1), (x2, y2)) = (x1x2, y1y2) and the inverse ι(x, y) = (y, x). Clearly,

this group structure coincides with the usual multiplication on C∗ ⊂ C.

Therefore, (C∗, µ, ι) is an algebraic group. This group is often denoted by Gm,

and called the multiplicative group.
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Algebraic groups (2)

EXAMPLE: Let Det : Cn2
be the determinant map defined on the space

Cn2
= Mat(Cn) of matrices in the usual way. The group GL(n,C) is identified

with the set G ⊂ (Mat(Cn)× C), defined by

G := {(A, t) ∈Mat(Cn)× C | Det(A)t = 1}.

The matrix multiplication gives multiplication on G: µ((A1, t1), (A2, t2)) =

(A1A2, t1t2), and the standard formula for matrix inverse gives ι(A, t) =

(t adj(A),det(A)), where adj(A) is the adjugate matrix (one which is composed

of (i, j)-minors of A). Clearly, the maps µ, ι define the standard multiplica-

tive structure on the group G = GL(n,C) of invertible matrices.

DEFINITION: A homomorphism of algebraic groups is a group homo-

morphism given by a morphism of the corresponding affine varieties.

DEFINITION: An algebraic representation of an algebraic group G is a

morphism of algebraic groups G−→GL(n,C), that is, a representation ex-

pressed by polynomial maps from the group G to matrices.
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Zariski topology (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology, where

closed sets are algebraic subsets. Zariski closure of Z ⊂M is an intersection

of all Zariski closed subsets containing Z.

DEFINITION: Cofinite topology is the topology on a set S such that the

only closed subsets are S and finite sets.

EXERCISE: Prove that Zariski topology on C coincides with the cofinite

topology.

CAUTION: Zariski topology is non-Hausdorff.
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Zariski dense sets

DEFINITION: A subset A ⊂ Z of an affine manifold is called Zariski dense

if its closure in Zariski topology is Z.

EXERCISE: Let A ⊂ C be a subset. Prove that A is Zariski dense if and

only if it is infinite.

CLAIM: Let A ⊂ X be a Zariski dense subset, and ϕ1, ϕ2 : X −→ Y be two

algebraic maps. Suppose that ϕ1|A = ϕ2|A. Then ϕ1 = ϕ2.

Proof: The set Z := {x ∈ X | ϕ1(x) = ϕ2(x)} is Zariski closed, because it

is defined by polynomial equations. Since A ⊂ Z, the set Z contains the

Zariski closure of A.

EXERCISE: Consider a differentiable group homomorphism ϕ : S1 −→ S1.

Prove that it is given by t−→ td, for some d ∈ Z.
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Representations of algebraic groups

THEOREM: Any algebraic representation of C∗ is a direct sum of

1-dimensional representations. Any 1-dimensional representation ρ :

C∗ −→GL(1,C) is given by ρ(z)(v) = zkv, for some k ∈ Z.

Proof. Step1: Consider the subgroup Gpn ⊂ C∗ of roots of unity of degree pn.

This is a commutative cyclic group, hence V can be represented as a sum of

Gpn-invariant 1-dimensional representations, V =
⊕
Vi. Consider a generator

z of the cyclic group Gpn ⊂ C∗. On each 1-dimensional representation Vi,

z ∈ Gpn acts by a scalar multiplication by zdi.

Step 2: Consider the numbers di(n), obtained as functions of n in the se-

quence Gpn ⊂ Gpn+1 ⊂ Gpn+2 ⊂ .... These numbers are compatible as follows:

di(n) = di(n + 1) mod pn. Passing to the closure of
⋃
nGpn, we obtain a

smooth homomorphism from circle to circle represented by a polynomial map

of degree 6 N . Then di(n) 6 N for each n, and therefore the sequence di(n)

stabilizes. Denote by di its limit. Then ρ(z) = zdi on Vi.

Step 3: Since
⋃
nGpn is Zariski dense in C∗, the

⋃
nGpn-invariant decomposi-

tion V =
⊕
Vi is actually C∗-invariant.
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Graded vector spaces

DEFINITION: Representation of C∗ of finite type is a direct sum V =
⊕
Vi

of algebraic representations of C∗, with each Vi finite-dimensional, and with

C∗ acting on Vk by ρ(z)(v) = zkv. Morphism of representations of finite

type is a morphism of representations (that is, a linear map commuting with

C∗-action)

DEFINITION: A graded vector space is a vector space V ∗ =
⊕
i∈Z V

i,

represented as a direct sum of its graded components Vi. A graded vector

space is called of finite type if all V i are finitely dimensional. Morphism of

graded vector spaces is a linear map preserving grading.

Claim 1: The category of graded spaces of finite type equivalent to

the category of representations of C∗ of finite type.

Proof: Let C∗ act on V ∗ =
⊕
i∈Z V

i as ρ(z)(v) = zkv on V k. This gives a

functor from graded vector spaces to representations. The inverse functor is

provided by the eigenvalue decomposition for generic z ∈ C∗.
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Graded rings of finite type

DEFINITION: A graded ring is a ring A∗, A∗ =
⊕
i∈ZA

i, with multiplication

which satisfies Ai · Aj ⊂ Ai+j (“grading is multiplicative”). A graded ring is

called of finite type if all Ai are finitely dimensional.

EXAMPLE: Polynomial ring C[V ] =
⊕
iSymi V is clearly graded.

DEFINITION: A ring with C∗-action of finite type is a ring equipped

with an action ρ of C∗ of finite type, in such a way that the multiplication

and addition is compatible with the C∗-action: ρ(z)(ab) = ρ(z)(a)ρ(z)(b),

ρ(z)(a+ b) = ρ(z)(a) + ρ(z)(b).

PROPOSITION: The category of graded rings of finite type is equiv-

alent to the category of rings with C∗-action of finite type.

Proof: Let A∗ be a graded ring, and let C∗ act on A∗ =
⊕
i∈ZA

i as ρ(z)(v) =

zkv on Ak. Then the compatibility of grading with multiplication implies

ρ(z)(ab) = ρ(z)(a)ρ(z)(b), giving a functor from graded rings to rings with

C∗-action. This construction is clearly invertible.

12



Algebraic geometry I, lecture 19 M. Verbitsky

Projective varieties

DEFINITION: A projective variety is a subset of CPn obtained as the set

of solutions of a system homogeneous polynomial equations

P1(z1, ..., zn+1) = P2(z1, ..., zn+1) = ... = Pk(z1, ..., zn+1) = 0.

DEFINITION: A graded ideal in a graded ring A∗ is an ideal I∗ ⊂ A∗ which

is a direct sum of its graded components I∗ =
⊕
Ik, with Ik ⊂ A∗.

REMARK: Clearly, a projective manifold is given by a graded ideal

generated by Pi(z1, ..., zn+1).

Theorem 1: Consider the action of C∗ on Cn+1 by homotheties, ρ(t)(z) = tz.

Then a C∗-invariant subvariety A ⊂ Cn+1 is given by a graded ideal, and

conversely, each graded ideal defines a C∗-invariant subvariety.

Proof: The space of polynomials is graded by degree, and ρ(t) acts on homo-

geneous polynomials of degree d as a multiplication by td. Since C∗-invariant

subspaces in C[z1, ..., zn+1] are the same as graded subspaces (Claim 1), C∗-
invariant subvarietes correspond to graded ideals.
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Projective Nullstellensatz

REMARK: Let I∗ ⊂ R = C[z1, ..., zn+1] be a graded ideal, and
√
I∗ its radical,

that is, an ideal generated by all x ∈ R such xn ∈ I∗. Then
√
I∗ is also graded.

Indeed, graded is the same as C∗-invariant, and radical of an C∗-invariant ideal
is C∗-invariant.

THEOREM: C∗-invariant radical ideals in C[z1, ..., zn+1] bijectively cor-
respond to projective subvarieties in CPn.

Proof: By Hilbert Nullstellensatz, the zero set V (I) of a radical ideal I∗ ⊂
C[z1, ..., zn+1] satisfies Ann(V (I)) = I. By Theorem 1, this gives a bijective
correspondence between non-empty C∗-invariant subvarieties Z̃ ⊂ Cn+1 and
C∗-invariant radical ideals in C[z1, ..., zn+1]. Since the set Z̃ is C∗-invariant,
with each its point z ∈ Z̃ it contains a line passing through z, hence it
is uniquely determined by its projection to CPn. We obtained a 1-to-1
correspondences between the following data:

(subsets of CPn,obtained as solutions

of a system of homogeneous equations)

⇔ (non-empty C∗-invariant subvarieties in Cn+1)

⇔ (radical graded ideals I∗ ⊂ C[z1, ..., zn+1])
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