Geometria Algébrica I

lecture 19: Projective space and projective varieties

Misha Verbitsky

IMPA, sala 232

October 26, 2018

Complex projective space

DEFINITION: Let $V = \mathbb{C}^n$ be a complex vector space equipped with a Hermitian form h, and U(n) the group of complex endomorphisms of V preserving h. This group is called **the complex isometry group**.

DEFINITION: Complex projective space $\mathbb{C}P^n$ is the space of 1-dimensional subspaces (lines) in \mathbb{C}^{n+1} .

REMARK: Since the group U(n + 1) of unitary matrices acts on lines in \mathbb{C}^{n+1} transitively, $\mathbb{C}P^n$ is a homogeneous space, $\mathbb{C}P^n = \frac{U(n+1)}{U(1) \times U(n)}$, where $U(1) \times U(n)$ is a stabilizer of a line in \mathbb{C}^{n+1} .

EXAMPLE: $\mathbb{C}P^1$ is S^2 .

Homogeneous and affine coordinates on $\mathbb{C}P^n$

DEFINITION: We identify $\mathbb{C}P^1$ with the set of n + 1-tuples $x_0 : x_1 : ... : x_n$ defined up to equivalence $x_0 : x_1 : ... : x_n \sim \lambda x_0 : \lambda x_1 : ... : \lambda x_n$, for each $\lambda \in \mathbb{C}^*$. This representation is called **homogeneous coordinates**. Affine **coordinates** in the chart $x_k \neq 0$ are are $\frac{x_0}{x_k} : \frac{x_1}{x_k} : ... : 1 : ... : \frac{x_n}{x_k}$. The space $\mathbb{C}P^n$ is a union of n + 1 affine charts identified with \mathbb{C}^n , with the complement to each chart identified with $\mathbb{C}P^{n-1}$.

CLAIM: Complex projective space is a complex manifold, with the atlas given by affine charts $\mathbb{A}_k = \left\{\frac{x_0}{x_k} : \frac{x_1}{x_k} : \ldots : 1 : \ldots : \frac{x_n}{x_k}\right\}$, and the transition functions mapping the set

$$\mathbb{A}_k \cap \mathbb{A}_l = \left\{ \frac{x_0}{x_k} : \frac{x_1}{x_k} : \dots : 1 : \dots : \frac{x_n}{x_k} \middle| \quad x_l \neq 0 \right\}$$

to

$$\mathbb{A}_l \cap \mathbb{A}_k = \left\{ \frac{x_0}{x_l} : \frac{x_1}{x_l} : \dots : 1 : \dots : \frac{x_n}{x_l} \mid x_k \neq 0 \right\}$$

as a multiplication of all terms by the scalar $\frac{x_k}{x_l}$.

Eigenvectors of commuting operators

LEMMA: Let $A, B \in End V$ be commuting operators on a complex vector space V over an algebraically closed field. Then A and B have a common eigenvector.

Proof: Let V_{α} be an eigenspace of A with eigenvalue α . For each $v \in V_{\alpha}$, one has $AB(v) = BA(v) = B(\alpha v) = \alpha B(v)$. Therefore, $B(V_{\alpha}) \subset V_{\alpha}$. Now, any eigenvector of B in V_{α} is a common eigenvector.

LEMMA: Let $A_1, ..., A_n$ be a family of commuting operators on a complex vector space V. Then A_1 , ..., A_n have a common eigenvector.

Proof: Using induction, we may assume that the operators $A_1, ..., A_k$ have a common eigenvector with eigenvalues $\alpha_1, ..., \alpha_k$. The corresponding eigenspace W is A_{k+1} -invariant, hence A_{k+1} has an eigenvector in W. This eigenvector is a common eigenvector for $A_1, ..., A_k, A_{k+1}$. Using induction in k, we obtain a common eigenvector for all A_i .

Representations of finite commutative groups

THEOREM: Let V be a complex representation of a commutative finite group G. Then V is a direct sum of 1-dimensional G-representations.

Proof: By the previous lemma, G has a common eigenvector, hence there exists a G-invariant 1-dimensional subspace $W \subset V$. Choosing a G-invariant Hermitian structure, we obtain a G-invariant decomposition $V = W \oplus W^{\perp}$. Using induction in dim V, we may assume that the orthogonal complement W^{\perp} is a direct sum of 1-dimensional G-representations, hence the same is true for $V = W \oplus W^{\perp}$.

Algebraic groups

DEFINITION: Let $G \subset \mathbb{C}^n$ be an affine variety, equipped with a group structure, that is, the map $G \times G \xrightarrow{\mu} G$ of group multiplication and the map $G \xrightarrow{\iota} G$ of taking inverse satisfying the group axioms. We say that G is an **algebraic group** if the μ and ι are given by algebraic morphisms, that is, expressed polynomially.

EXAMPLE: The space $\mathbb{C}^* := \mathbb{C}\setminus 0$ is given as an algebraic subset of \mathbb{C}^2 given by equation xy = 1. We define the group structure using the multiplication map $\mu((x_1, y_1), (x_2, y_2)) = (x_1x_2, y_1y_2)$ and the inverse $\iota(x, y) = (y, x)$. Clearly, **this group structure coincides with the usual multiplication on** $\mathbb{C}^* \subset \mathbb{C}$. Therefore, $(\mathbb{C}^*, \mu, \iota)$ is an algebraic group. This group is often denoted by \mathbb{G}_m , and called **the multiplicative group**.

Algebraic groups (2)

EXAMPLE: Let Det : \mathbb{C}^{n^2} be the determinant map defined on the space $\mathbb{C}^{n^2} = Mat(\mathbb{C}^n)$ of matrices in the usual way. The group $GL(n,\mathbb{C})$ is identified with the set $G \subset (Mat(\mathbb{C}^n) \times \mathbb{C})$, defined by

$$G := \{ (A, t) \in \mathsf{Mat}(\mathbb{C}^n) \times \mathbb{C} \mid \mathsf{Det}(A)t = 1 \}.$$

The matrix multiplication gives multiplication on G: $\mu((A_1, t_1), (A_2, t_2)) = (A_1A_2, t_1t_2)$, and the standard formula for matrix inverse gives $\iota(A, t) = (t \operatorname{adj}(A), \det(A))$, where $\operatorname{adj}(A)$ is the adjugate matrix (one which is composed of (i, j)-minors of A). Clearly, the maps μ, ι define the standard multiplicative structure on the group $G = GL(n, \mathbb{C})$ of invertible matrices.

DEFINITION: A homomorphism of algebraic groups is a group homomorphism given by a morphism of the corresponding affine varieties.

DEFINITION: An algebraic representation of an algebraic group G is a morphism of algebraic groups $G \longrightarrow GL(n, \mathbb{C})$, that is, a representation expressed by polynomial maps from the group G to matrices.

Zariski topology (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology, where closed sets are algebraic subsets. **Zariski closure** of $Z \subset M$ is an intersection of all Zariski closed subsets containing Z.

DEFINITION: Cofinite topology is the topology on a set S such that the only closed subsets are S and finite sets.

EXERCISE: Prove that **Zariski topology on** \mathbb{C} **coincides with the cofinite topology.**

CAUTION: Zariski topology is non-Hausdorff.

Zariski dense sets

DEFINITION: A subset $A \subset Z$ of an affine manifold is called **Zariski dense** if its closure in Zariski topology is Z.

EXERCISE: Let $A \subset \mathbb{C}$ be a subset. Prove that A is Zariski dense if and only if it is infinite.

CLAIM: Let $A \subset X$ be a Zariski dense subset, and $\varphi_1, \varphi_2 \colon X \longrightarrow Y$ be two algebraic maps. Suppose that $\varphi_1|_A = \varphi_2|_A$. Then $\varphi_1 = \varphi_2$.

Proof: The set $Z := \{x \in X \mid \varphi_1(x) = \varphi_2(x)\}$ is Zariski closed, because it is defined by polynomial equations. Since $A \subset Z$, the set Z contains the **Zariski closure of** A.

EXERCISE: Consider a differentiable group homomorphism $\varphi : S^1 \longrightarrow S^1$. **Prove that it is given by** $t \longrightarrow t^d$, for some $d \in \mathbb{Z}$.

Representations of algebraic groups

THEOREM: Any algebraic representation of \mathbb{C}^* is a direct sum of **1-dimensional representations.** Any **1-dimensional representation** ρ : $\mathbb{C}^* \longrightarrow GL(1,\mathbb{C})$ is given by $\rho(z)(v) = z^k v$, for some $k \in \mathbb{Z}$.

Proof. Step1: Consider the subgroup $\mathbb{G}_{p^n} \subset \mathbb{C}^*$ of roots of unity of degree p^n . This is a commutative cyclic group, hence V can be represented as a sum of \mathbb{G}_{p^n} -invariant 1-dimensional representations, $V = \bigoplus V_i$. Consider a generator z of the cyclic group $\mathbb{G}_{p^n} \subset \mathbb{C}^*$. On each 1-dimensional representation V_i , $z \in \mathbb{G}_{p^n}$ acts by a scalar multiplication by z^{d_i} .

Step 2: Consider the numbers $d_i(n)$, obtained as functions of n in the sequence $\mathbb{G}_{p^n} \subset \mathbb{G}_{p^{n+1}} \subset \mathbb{G}_{p^{n+2}} \subset \dots$ These numbers are compatible as follows: $d_i(n) = d_i(n+1) \mod p^n$. Passing to the closure of $\bigcup_n \mathbb{G}_{p^n}$, we obtain a smooth homomorphism from circle to circle represented by a polynomial map of degree $\leq N$. Then $d_i(n) \leq N$ for each n, and therefore the sequence $d_i(n)$ stabilizes. Denote by d_i its limit. Then $\rho(z) = z^{d_i}$ on V_i .

Step 3: Since $\bigcup_n \mathbb{G}_{p^n}$ is Zariski dense in \mathbb{C}^* , the $\bigcup_n \mathbb{G}_{p^n}$ -invariant decomposition $V = \bigoplus V_i$ is actually \mathbb{C}^* -invariant.

Graded vector spaces

DEFINITION: Representation of \mathbb{C}^* of finite type is a direct sum $V = \bigoplus V_i$ of algebraic representations of \mathbb{C}^* , with each V_i finite-dimensional, and with \mathbb{C}^* acting on V_k by $\rho(z)(v) = z^k v$. Morphism of representations of finite type is a morphism of representations (that is, a linear map commuting with \mathbb{C}^* -action)

DEFINITION: A graded vector space is a vector space $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$, represented as a direct sum of its graded components V_i . A graded vector space is called of finite type if all V^i are finitely dimensional. Morphism of graded vector spaces is a linear map preserving grading.

Claim 1: The category of graded spaces of finite type equivalent to the category of representations of \mathbb{C}^* of finite type.

Proof: Let \mathbb{C}^* act on $V^* = \bigoplus_{i \in \mathbb{Z}} V^i$ as $\rho(z)(v) = z^k v$ on V^k . This gives a functor from graded vector spaces to representations. The inverse functor is provided by the eigenvalue decomposition for generic $z \in \mathbb{C}^*$.

Graded rings of finite type

DEFINITION: A graded ring is a ring A^* , $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$, with multiplication which satisfies $A^i \cdot A^j \subset A^{i+j}$ ("grading is multiplicative"). A graded ring is called **of finite type** if all A^i are finitely dimensional.

EXAMPLE: Polynomial ring $\mathbb{C}[V] = \bigoplus_i \operatorname{Sym}^i V$ is clearly graded.

DEFINITION: A ring with \mathbb{C}^* -action of finite type is a ring equipped with an action ρ of \mathbb{C}^* of finite type, in such a way that the multiplication and addition is compatible with the \mathbb{C}^* -action: $\rho(z)(ab) = \rho(z)(a)\rho(z)(b)$, $\rho(z)(a+b) = \rho(z)(a) + \rho(z)(b)$.

PROPOSITION: The category of graded rings of finite type is equivalent to the category of rings with \mathbb{C}^* -action of finite type.

Proof: Let A^* be a graded ring, and let \mathbb{C}^* act on $A^* = \bigoplus_{i \in \mathbb{Z}} A^i$ as $\rho(z)(v) = z^k v$ on A^k . Then the compatibility of grading with multiplication implies $\rho(z)(ab) = \rho(z)(a)\rho(z)(b)$, giving a functor from graded rings to rings with \mathbb{C}^* -action. This construction is clearly invertible.

Projective varieties

DEFINITION: A projective variety is a subset of $\mathbb{C}P^n$ obtained as the set of solutions of a system homogeneous polynomial equations $P_1(z_1, ..., z_{n+1}) = P_2(z_1, ..., z_{n+1}) = ... = P_k(z_1, ..., z_{n+1}) = 0.$

DEFINITION: A graded ideal in a graded ring A^* is an ideal $I^* \subset A^*$ which is a direct sum of its graded components $I^* = \bigoplus I^k$, with $I^k \subset A^*$.

REMARK: Clearly, a projective manifold is given by a graded ideal generated by $P_i(z_1, ..., z_{n+1})$.

Theorem 1: Consider the action of \mathbb{C}^* on \mathbb{C}^{n+1} by homotheties, $\rho(t)(z) = tz$. Then a \mathbb{C}^* -invariant subvariety $A \subset \mathbb{C}^{n+1}$ is given by a graded ideal, and conversely, each graded ideal defines a \mathbb{C}^* -invariant subvariety.

Proof: The space of polynomials is graded by degree, and $\rho(t)$ acts on homogeneous polynomials of degree d as a multiplication by t^d . Since \mathbb{C}^* -invariant subspaces in $\mathbb{C}[z_1, ..., z_{n+1}]$ are the same as graded subspaces (Claim 1), \mathbb{C}^* -invariant subvarietes correspond to graded ideals.

Projective Nullstellensatz

REMARK: Let $I^* \subset R = \mathbb{C}[z_1, ..., z_{n+1}]$ be a graded ideal, and $\sqrt{I^*}$ its radical, that is, an ideal generated by all $x \in R$ such $x^n \in I^*$. Then $\sqrt{I^*}$ is also graded. Indeed, graded is the same as \mathbb{C}^* -invariant, and radical of an \mathbb{C}^* -invariant ideal is \mathbb{C}^* -invariant.

THEOREM: \mathbb{C}^* -invariant radical ideals in $\mathbb{C}[z_1, ..., z_{n+1}]$ bijectively correspond to projective subvarieties in $\mathbb{C}P^n$.

Proof: By Hilbert Nullstellensatz, the zero set V(I) of a radical ideal $I^* \subset \mathbb{C}[z_1, ..., z_{n+1}]$ satisfies Ann(V(I)) = I. By Theorem 1, this gives a bijective correspondence between non-empty \mathbb{C}^* -invariant subvarieties $\tilde{Z} \subset \mathbb{C}^{n+1}$ and \mathbb{C}^* -invariant radical ideals in $\mathbb{C}[z_1, ..., z_{n+1}]$. Since the set \tilde{Z} is \mathbb{C}^* -invariant, with each its point $z \in \tilde{Z}$ it contains a line passing through z, hence it is uniquely determined by its projection to $\mathbb{C}P^n$. We obtained a 1-to-1 correspondences between the following data:

(subsets of $\mathbb{C}P^n$, obtained as solutions of a system of homogeneous equations) \Leftrightarrow (non-empty \mathbb{C}^* -invariant subvarieties in \mathbb{C}^{n+1}) \Leftrightarrow (radical graded ideals $I^* \subset \mathbb{C}[z_1, ..., z_{n+1}]$)