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Complex projective space

DEFINITION: Let V = C" be a complex vector space equipped with a Her-
mitian form h, and U(n) the group of complex endomorphisms of V preserving
h. This group is called the complex isometry group.

DEFINITION: Complex projective space CP" is the space of 1-dimensional
subspaces (lines) in C* 1.

REMARK: Since the group U(n + 1) of unitary matrices acts on lines in
cnt1 transitively, CP" is a homogeneous space, CP" = -t \where

= T()xU(n)’
U(1) x U(n) is a stabilizer of a line in C*t1,

EXAMPLE: CP! is §2.
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Homogeneous and affine coordinates on CP"

DEFINITION: We identify CP! with the set of n 4 1-tuples g : z1 : ... : Zn
defined up to equivalence zg : 1 : ... : Tp ~ Axg : Ax1 : ... | Axp, fOr each
A € C*. This representation is called homogeneous coordinates. Affine
coordinates in the chart z;, %= 0 are are ﬁ—g : % VTR R ﬁ—: The space
CP™ is a union of n+ 1 affine charts identified with C", with the complement

to each chart identified with CP"—1.

CLAIM: Complex projective space is a complex manifold, with the atlas given

by affine charts A, = {i—z : % VTR OO i—z} , and the transition functions
mapping the set
AkmAlz{x—O:ﬂ:...:l:...:x—n xl#o}
T Tk T,
to
AlﬂAk:{@:ﬂ:...:l:...:x—n x,ﬂso}
Ly I L]

as a multiplication of all terms by the scalar Cfv—’lf
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Eigenvectors of commmuting operators

LEMMA: Let A,B € EndV be commuting operators on a complex vector
space V over an algebraically closed field. Then A and B have a common
eigenvector.

Proof: Let V, be an eigenspace of A with eigenvalue «. For each v € V,, one
has AB(v) = BA(v) = B(av) = aB(v). Therefore, B(Vy) C Vo. Now, any
eigenvector of B in V, iS a common eigenvector. m

LEMMA: Let Aq,..., Ay be a family of commuting operators on a complex
vector space V. Then A4, ..., Ay, have a common eigenvector.

Proof: Using induction, we may assume that the operators Aq,..., A, have a
common eigenvector with eigenvalues a1, ...,ai. The corresponding eigenspace
W is Ag41-invariant, hence Ag4, has an eigenvector in W. This eigenvector
is @ common eigenvector for Ay, ..., A, A4 1. Using induction in k, we obtain
a common eigenvector for all A;. m



Algebraic geometry I, lecture 19 M. Verbitsky

Representations of finite commutative groups

THEOREM: Let V be a complex representation of a commutative finite
group G. Then V is a direct sum of 1-dimensional G-representations.

Proof: By the previous lemma, G has a common eigenvector, hence there
exists a G-invariant 1-dimensional subspace W C V. Choosing a G-invariant
Hermitian structure, we obtain a G-invariant decomposition V = W &
w-. Using induction in dimV, we may assume that the orthogonal com-
plement WL is a a direct sum of 1-dimensional G-representations, hence the
same is true for V=W e W-L. =
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Algebraic groups

DEFINITION: Let G C C" be an affine variety, equipped with a group struc-
ture, that is, the map G x GG £, G of group multiplication and the map
G - G of taking inverse satisfying the group axioms. We say that G is an
algebraic group if the u and ¢« are givem by algebraic morphisms, that is,

expressed polynomially.

EXAMPLE: The space C* := C\0 is given as an algebraic subset of C2 given
by equation zy = 1. We define the group structure using the multiplication
map u((z1,y1), (x2,y2)) = (z172,y1y2) and the inverse «(z,y) = (y,x). Clearly,
this group structure coincides with the usual multiplication on C* C C.
Therefore, (C*, u, ) is an algebraic group. This group is often denoted by Gy,
and called the multiplicative group.
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Algebraic groups (2)

EXAMPLE: Let Det : (C”2 be the determinant map defined on the space
cn’ = Mat(C"™) of matrices in the usual way. The group GL(n,C) is identified
with the set G C (Mat(C") x C), defined by

G :={(A,t) € Mat(C") xC | Det(A)t=1}.

The matrix multiplication gives multiplication on G: u((A1,t1),(As,tp)) =
(A1Ao,t1t>), and the standard formula for matrix inverse gives ((A,t) =
(tadj(A),det(A)), where adj(A) is the adjugate matrix (one which is composed
of (4, 7)-minors of A). Clearly, the maps u,: define the standard multiplica-
tive structure on the group G = GL(n,C) of invertible matrices.

DEFINITION: A homomorphism of algebraic groups is a group homo-
morphism given by a morphism of the corresponding affine varieties.

DEFINITION: An algebraic representation of an algebraic group G is a
morphism of algebraic groups G — GL(n,C), that is, a representation ex-
pressed by polynomial maps from the group G to matrices.

-
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Zariski topology (reminder)

DEFINITION: Zariski topology on an algebraic variety is a topology, where
closed sets are algebraic subsets. Zariski closure of Z C M is an intersection
of all Zariski closed subsets containing Z.

DEFINITION: Cofinite topology is the topology on a set S such that the
only closed subsets are S and finite sets.

EXERCISE: Prove that Zariski topology on C coincides with the cofinite
topology.

CAUTION: Zariski topology is non-HausdorfF.
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Zariski dense sets

DEFINITION: A subset A C Z of an affine manifold is called Zariski dense
if its closure in Zariski topology is Z.

EXERCISE: Let A C C be a subset. Prove that A is Zariski dense if and
only if it is infinite.

CLAIM: Let A C X be a Zariski dense subset, and ¢1,¢0>: X — Y be two
algebraic maps. Suppose that p1|4 = p2|a- Then p; = ¢s.

Proof: Theset Z :={x e X | ¢i1(x) = po(x)} is Zariski closed, because it
is defined by polynomial equations. Since A C Z, the set Z contains the
Zariski closure of A. m

EXERCISE: Consider a differentiable group homomorphism ¢ : St — 51,
Prove that it is given by ¢ — ¢4 for some d € Z.
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Representations of algebraic groups

THEOREM: Any algebraic representation of C* is a direct sum of
1-dimensional representations. Any 1l1l-dimensional representation p :
C* — GL(1,C) is given by p(z)(v) = zkv, for some k € Z.

Proof. Stepl: Consider the subgroup Gpn C C* of roots of unity of degree p™.
This is a commutative cyclic group, hence V can be represented as a sum of
Gyn-invariant 1-dimensional representations, V= @ V;. Consider a generator
z of the cyclic group Gy, C C*. On each 1-dimensional representation V;,
2 € Gyn acts by a scalar multiplication by z%.

Step 2: Consider the numbers d;(n), obtained as functions of n in the se-
quence Gyn C Gpn+1 C Gpn+2 C .... These numbers are compatible as follows:
d;(n) = d;(n + 1) mod p™. Passing to the closure of |, G,», we obtain a
smooth homomorphism from circle to circle represented by a polynomial map
of degree < N. Then d;(n) < N for each n, and therefore the sequence d;(n)
stabilizes. Denote by d; its limit. Then p(z) = z% on V.

Step 3: Since |, Gyn is Zariski dense in C*, the U, Gyn-invariant decomposi-
tion V =@ V; is actually C*-invariant. =
10
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Graded vector spaces

DEFINITION: Representation of C* of finite type isa directsumV =@V,
of algebraic representations of C*, with each V; finite-dimensional, and with
C* acting on Vi by p(2)(v) = zFv. Morphism of representations of finite
type is a morphism of representations (that is, a linear map commuting with
C*-action)

DEFINITION: A graded vector space is a vector space V* = @,z 1743
represented as a direct sum of its graded components V;. A graded vector
space is called of finite type if all V' are finitely dimensional. Morphism of
graded vector spaces is a linear map preserving grading.

Claim 1: The category of graded spaces of finite type equivalent to
the category of representations of C* of finite type.

Proof: Let C* act on V* = @,z V* as p(z)(v) = zFv on VK. This gives a
functor from graded vector spaces to representations. The inverse functor is
provided by the eigenvalue decomposition for generic z € C*. =

11
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Graded rings of finite type

DEFINITION: A graded ring is a ring A*, A* = @,c7, A*, with multiplication
which satisfies A*. A7 ¢ A*tJ (“grading is multiplicative”). A graded ring is
called of finite type if all A are finitely dimensional.

EXAMPLE: Polynomial ring C[V] = @, Sym*V is clearly graded.

DEFINITION: A ring with C*-action of finite type is a ring equipped
with an action p of C* of finite type, in such a way that the multiplication
and addition is compatible with the C*-action: p(z)(ab) = p(2)(a)p(z)(b),

p(z)(a+b) = p(z)(a) + p(2)(b).

PROPOSITION: The category of graded rings of finite type is equiv-
alent to the category of rings with C*-action of finite type.

Proof: Let A* be a graded ring, and let C* act on A* = @,z A* as p(2)(v) =
kv on AR, Then the compatibility of grading with multiplication implies
p(z)(ab) = p(z)(a)p(z)(b), giving a functor from graded rings to rings with
C*-action. This construction is clearly invertible. m

12
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Projective varieties

DEFINITION: A projective variety is a subset of CP™ obtained as the set
of solutions of a system homogeneous polynomial equations

P1(21, 0 2p41) = P2(21, -, 2p41) = . = P21, ., 2p41) = 0.

DEFINITION: A graded ideal in a graded ring A* is an ideal I* C A* which
is a direct sum of its graded components I* = EBI’“, with 1% ¢ A*.

REMARK: Clearly, a projective manifold is given by a graded ideal
dgenerated by P;(z1,...,2,41)-

Theorem 1: Consider the action of C* on C*t1 by homotheties, p(¢)(z) = tz.
Then a C*-invariant subvariety A c C**1! is given by a graded ideal, and
conversely, each graded ideal defines a C*-invariant subvariety.

Proof: The space of polynomials is graded by degree, and p(t) acts on homo-
geneous polynomials of degree d as a multiplication by td. Since C*-invariant
subspaces in C|zq, ..., z,4-1] are the same as graded subspaces (Claim 1), C*-
invariant subvarietes correspond to graded ideals. m

13
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Projective Nullstellensatz

REMARK: Let I* C R = C|zq, ..., zp41] be a graded ideal, and VT* its radical,
that is, an ideal generated by all z € R such z™ € I*. Then I* is also graded.
Indeed, graded is the same as C*-invariant, and radical of an C*-invariant ideal
is C*-invariant.

THEOREM: C*-invariant radical ideals in Clzy,...,2,41] bijectively cor-
respond to projective subvarieties in CP".

Proof: By Hilbert Nullstellensatz, the zero set V(I) of a radical ideal I* C
Clz1, ..., 2,41] satisfies Ann(V (1)) = I. By Theorem 1, this gives a bijective
correspondence between non-empty C*-invariant subvarieties Z C cnt+1 and
C*-invariant radical ideals in C[zq,...,2,41]. Since the set Z is C*-invariant,
with each its point z € Z it contains a line passing through z, hence it
is uniquely determined by its projection to CP"™. We obtained a 1-to-1
correspondences between the following data:

(subsets of CP",obtained as solutions

of a system of homogeneous equations)

& (non-empty C*-invariant subvarieties in C"T1)
« (radical graded ideals I" C C|z1, ..., 2,41])
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