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Some properties of Zariski topology (reminder)

DEFINITION: Base of topology on a topological space M is a set {Uα} of

open subsets such that any open subset of M can be obtained as a union of

some of Uα, and intersections of any two Uα also belong to this family.

CLAIM: Let M be an affine variety. The base of Zariski topology on M can

be given by all open subsets of form M\Z, where Z is a principal divisor, that

is, zero set of a function.

Proof: This is the same as to show that any Zariski closed subset is an

intersection of divisors.

PROPOSITION: Any variety with Zariski topology is compact, that is, any

cover in Zariski topology has a finite subcover.

Proof: Let U1 ⊂ U2 ⊂ U3 ⊂ ... be an increasing sequence of open subsets. To

prove compactness, it would suffice to show that it stabilizes. However, the

complements M\Ui give an decreasing sequence of Zariski closed subvarieties,

that is, an increasing sequence of radical ideals, and such a sequence has to

stabilize by Noetherianity.
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Base of topology and sheaves

Proposition 1: Let S = {Uα} be a base of topology on a topological space

M , and F(Uα) a family of vector spaces, defined for each Uα ∈ S. Assume that

for each pair Uα ⊃ Uβ from S, restriction maps are defined F(Uα)−→F(Uβ),

satisfying the sheaf axioms (associativity, gluing, vanishing) for such covers.

Then there exists a unique sheaf F on M compatible with the sheaf

data F(Uα) for each Uα ∈ S, and the restriction maps F(Uα)−→F(Uβ).

Proof: Let U ⊂ M be an open set, U =
⋃
i∈I Uαi, where Uαi ∈ S. Define

F(U) as the set of all families fi ∈ F(Uαi) which satisfy the gluing axiom

(this makes sense, because intersection of two elements of S belongs to S).

From the definition it is clear that F(U) is a presheaf; it is a sheaf because

the gluing axioms for F(Uα) immediately imply the gluing axioms for F(U).
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Sheaf of regular functions (reminder)

Theorem 1: Let M be an affine variety, and {Uα} is a cover of M by affine
varieties of form Uα = M\Zα, where Zα is a principal divisor. Consider a
function f : M −→ C which is regular on each Uα. Then f is regular.

DEFINITION: Let U ⊂ M be a Zariski open subset of an algebraic variety,
obtained as a union U =

⋃
Uα of open affine subsets. We say that a function

on U is regular if it is regular on Uα.

PROPOSITION: Regular functions constitute a sheaf.

Proof: Sheaf is constructed using Proposition 1. Gluing axiom follows from
Theorem 1, the rest is clear.

DEFINITION: Algebraic variety (no longer “affine algebraic”) is a topo-
logical space equipped with a ring of sheaves, which is locally isomorphic to
an affine variety with its sheaf of regular functions and Zariski topology.

DEFINITION: Morphism of algebraic varieties is a map of algebraic vari-
eties, continuous in Zariski topology, such that pullback of a regular function
is regular.
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Algebraic varieties: charts and atlases

As for the smooth manifolds, algebraic varieties can be defined in terms of
charts and atlaces.

A chart on an algebraic variety is an open affine subset (a space with sheaf
of functions which is isomorphic to an affine variety with the sheaf of regular
functions). An atlas is a covering by affine charts {Uα}, such that any
intersection Uα∩Uβ is also a union of affine charts. Gluing data is transition
functions ϕα,β from Uα ∩ Uβ ⊂ Uα to Uα ∩ Uβ ⊂ Uβ. Cocycle conditions is
ϕα,β ◦ϕβ,γ = ϕα,γ for any triple of charts Uα, Uβ, Uγ. Here the maps ϕα,β ◦ϕβ,γ
and ϕα,γ are considered as maps from the triple intersection Uα ∩ Uβ ∩ Uγ
considered as a subset of Uα to Uα ∩ Uβ ∩ Uγ considered as a subset of Uγ.

PROPOSITION: Let M be a topological space, and {Uα} a covering on
M . Assume that each Uα is equipped with a sheaf of functions making it an
affine variety, and the transition functions are algebraic and satisfy the cocycle
condition. Then M is equipped with a unique structure of an algebraic
variety, compatible with this atlas and these transition functions.

Proof: We recover the sheaf of regular functions on M using Proposition 1
to recover the sheaf of regular functions OM on M . Then Theorem 1 implies
that {Uα} is an affine cover. Then (M,OM) is an algebraic variety.
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Projective varieties (reminder)

DEFINITION: A projective variety is a subset of CPn obtained as the set
of solutions of a system homogeneous polynomial equations
P1(z1, ..., zn+1) = P2(z1, ..., zn+1) = ... = Pk(z1, ..., zn+1) = 0.

DEFINITION: A graded ideal in a graded ring A∗ is an ideal I∗ ⊂ A∗ which
is a direct sum of its graded components I∗ =

⊕
Ik, with Ik ⊂ A∗.

REMARK: Clearly, a projective manifold is given by a graded ideal
generated by Pi(z1, ..., zn+1).

THEOREM: Consider the action of C∗ on Cn+1 by homotheties, ρ(t)(z) = tz.
Then a C∗-invariant subvariety A ⊂ Cn+1 is given by a graded ideal, and
conversely, each graded ideal defines a C∗-invariant subvariety.

REMARK: Let I∗ ⊂ R = C[z1, ..., zn+1] be a graded ideal, and
√
I∗ its radical,

that is, an ideal generated by all x ∈ R such xn ∈ I∗. Then
√
I∗ is also graded.

Indeed, graded is the same as C∗-invariant, and radical of an C∗-invariant ideal
is C∗-invariant.

THEOREM: C∗-invariant radical ideals in C[z1, ..., zn+1] bijectively cor-
respond to projective subvarieties in CPn.
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Examples of algebraic varieties (reminder)

EXAMPLE: Let M ⊂ CPn be a projective variety. Then it is an algebraic
variety in the sense of the definition above. Indeed, the homogeneous ideal
I restricted to the affine set set Ak gives the ideal of M ∩ Ak after setting
zk = 1. The subset M ∩ Ak ∩ Al is an affine subset given by zl 6= 0, and the
transition function maps

Ak ∩ Al =

{
x0

xk
:
x1

xk
: ... : 1: ... :

xn

xk

∣∣∣∣∣ xl 6= 0

}
to

Al ∩ Ak =

{
x0

xl
:
x1

xl
: ... : 1: ... :

xn

xl

∣∣∣∣∣ xk 6= 0

}
as a multiplication of all terms by xk

xl
, hence it induces an isomorphism on

regular functions. The cocycle condition is apparent.

EXAMPLE: Let Z ⊂ M be a Zariski closed subset of an algebraic variety.
Then the complement M\Z is also an algebraic variety. Indeed, locally
Z is obtained as an intersection of divisors, and this gives a covering of M\Z
by affine subvarieties.

REMARK: Note that M\Z is no longer affine, even if M is affine. Indeed,
C2\0 is not affine.
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Algebraic cones

DEFINITION: Let M ⊂ CPn be a projective variety, defined by a graded

ideal I∗ ⊂ C[z1, ..., zn+1], and C(M) ⊂ Cn+1 be the subset defined by the same

ideal. Then C(M) is called the cone or the algebraic cone of M .

REMARK: A subvariety X ⊂ Cn+1 is a cone if and only if it is C∗-
invariant (here, as elsewhere, C∗ acts on Cn+1 by homotheties, ρ(t)(v) = tv).

A C∗-invariant subvariety determines M in a unique way.

DEFINITION: Projectivization of a homothety invariant subset Z ⊂ Cn+1

is the set Z1 ⊂ CPn of all lines contained in Z. In this case, Z = C(Z1).

DEFINITION: The Graded ring of a projective variety is the ring of ho-

mogeneous functions on its cone. Using the notation defined above, it is a

ring C[z1, ..., zn+1]/I∗.
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Families of homogeneous functions

DEFINITION: Let A∗ be the graded ring of a projective variety, and V ⊂ Ap

a subspace. The set of base points of V the intersection of all zero divisors

for all f ∈ V . The space V ⊂ Ap is called base point free if it has no base

point.

DEFINITION: Let M ⊂ CPn be a projective manifold, and L ⊂ Ad a base

point free (m+ 1)-dimensional subspace, with basis a0, a1, ..., am. Projective

morphism associated with L from M to CPm is a map ϕ taking a point z

with homogeneous coordinates z0 : z1 : ... : zn to a0(z): a1(z): ... : am(z).

REMARK: If we replace z0 : z1 : ... : zn by an equivalent representation

λz0 : λz1 : ... : λzn, for some number λ ∈ C∗, the point ϕ(z) is given by

λda0(z): λda1(z): ... : λdam(z), because all ai are homogeneous of degree d.

Therefore, ϕ is a well defined morphism of algebraic varieties, ϕ :

M −→ CPm.

REMARK: It is possible to define projective morphisms in bigger gen-

erality, which I won’t do today.
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Homogeneous morphisms of algebraic cones

DEFINITION: Let ρ(t) be the homothety action on Cn, and Z ⊂ Cn a ρ-
invariant subvariety (that is, a cone of a projective variety). We say that a
morphism ϕ : Z −→ Cm is homogeneous of degree d if ϕ(tv) = tdϕ(v).

REMARK: Let X ⊂ CPn be a projective variety ϕ : X −→ PV be a projective
morphism, defined by a base point free subspace L ⊂ Ad, where V is the
dual space to L and A∗ =

⊕
Ai the ring of functions on the corresponding

cone C(X) ⊂ Cn+1. Then ϕ defines a map of algebraic cones C(X)
C(ϕ)−→ V

associated with the ring homomorphism OV = Sym∗(L)−→A∗ mapping l ∈ L
to its image in A∗.

CLAIM: The map C(X)
C(ϕ)−→ V is homogeneous of degree d.

Proof: C(ϕ) takes a point x = (x0, ..., xn) ∈ C(X) and maps it to a0(x), ..., am(x) ∈
Cm+1 = V . This map is clearly homogeneous of degree d.

DEFINITION: Let N := dim Symd(Cn+1). Veronese embedding is a map
CPn −→ CPN−1 associated with the space L = Symd(Cn+1) of all degree d

polynomials.
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Veronese embedding

EXAMPLE: Veronese map V : CP1 −→ CP2 takes a point with homogeneous

coordinates x : y to x2 : xy : y2. Its image is a subvariety in CP2 given by

a homogeneous equation ac = b2.

CLAIM: Veronese map CP1 −→ CP2 is an isomorphism from CP1 to a

subvariety Z given by ac = b2.

Proof. Step1: We cover Z by two charts, Ua := {(a : b : c) ∈ CP2 | a 6= 0}
and Uc := {(a : b : c) ∈ CP2 | c 6= 0}. Since ac = b2, all points in Z with b 6= 0

belong to Ua ∩ Uc, hence Ua ∪ Uc = Z.

Step 2: In Ua, the map Ψ : Z −→ CP1 is defined by a : b : c 7→ 1 : b
a. If

a : b : c = x2 : xy : y2, we have Ψ(a : b : c) = 1: y
x, hence it is inverse to V in

the chart 1: z on CP1. In Uc, we define Ψ as Ψ(a : b : c) = b
c : 1. By the same

reason, Ψ is inverse to V in the chart z : 1 in CP1. These maps agree on

Ua ∩ Uc, because in this set both a and c are invertible, giving(
b

c
: 1
)

= (b : c) = (ab : ac) = (ab : b2) =
(

1:
b

a

)
.
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