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Decomposable tensors

DEFINITION: A rank of a linear map V −→W is dimension of its image.

DEFINITION: Let V,W be vector spaces. A tensor α ∈ V ⊗ W is called

decomposable if α = x⊗ y, for some x ∈ V, y ∈W .

CLAIM: V ⊗W = Hom(V ∗,W ) for any finitely-dimensional spaces V,W .

Proof: For any tensor α ∈ V ⊗W and p ∈ V ∗, define ζ(p, v⊗w) := 〈p, v〉w. This

map is linear on v, w, hence is extended to a linear map V ⊗W −→ Hom(V ∗,W ).

This map is clearly injective. To see that it is an isomorphism, compare

dimensions.

PROPOSITION: A tensor α ∈ V ⊗W is decomposable if and only if the

rank of the corresponding map κ : V ∗ −→W is 6 1.

Proof: Since ζ(p ⊗ x ⊗ y) = 〈p, x〉y, the rank of κ is 1 for any decomposable

α. Conversely, let w ∈W be a generator of the image of κ. Then α ∈ V ⊗〈w〉,
and all elements in this space are decomposable.
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Algebraic cones (reminder)

DEFINITION: Let M ⊂ CPn be a projective variety, defined by a graded

ideal I∗ ⊂ C[z1, ..., zn+1], and C(M) ⊂ Cn+1 be the subset defined by the same

ideal. Then C(M) is called the cone or the algebraic cone of M .

REMARK: A subvariety X ⊂ Cn+1 is a cone if and only if it is C∗-
invariant (here, as elsewhere, C∗ acts on Cn+1 by homotheties, ρ(t)(v) = tv).

A C∗-invariant subvariety determines M in a unique way.

DEFINITION: Projectivization of a homothety invariant subset Z ⊂ Cn+1

is the set Z1 ⊂ CPn of all lines contained in Z. In this case, Z = C(Z1).

DEFINITION: The Graded ring of a projective variety is the ring of ho-

mogeneous functions on its cone. Using the notation defined above, it is a

ring C[z1, ..., zn+1]/I∗.
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Segre variety

COROLLARY: The set Z ⊂ V ⊗W of decomposable tensors is an affine

variety.

Proof: Let v1, ..., vn be basis in V , and w1, ..., wm basis in W . For any tensor

α =
∑
i,j aijvi ⊗ wj, the rank of α considered as a map from V ∗ to W is equal

to the rank of the matrix (aij). This matrix has rank 1 if and only if all 2× 2

minors vanish. This is an algebraic condition.

DEFINITION: Let V,W be vector spaces. Segre variety is the projectiviza-

tion of the set Z ⊂ V ⊗W of decomposable tensors.
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Product of affine varieties (reminder)

REMARK: Recall that product of objects X,Y in category C is an object

X × Y such that Mor(Z,X)×Mor(Z, Y ) = Mor(Z,X × Y ).

LEMMA: Let A,B be finitely-generated, reduced rings over C, and R :=

A⊗C B their product. Then R is reduced (that is, has no nilpotents).

THEOREM: Let A,B be finitely generated rings without nilpotents, and

R := A ⊗C B. Then Spec(R) = Spec(A) × Spec(B). Moreover, Spec(R) is

the product of the varieties Spec(A) and Spec(B) in the category of

affine varieties.
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Segre variety is a product

REMARK: Let X,Y be algebraic varieties, with affine covers {Uα} and {Vβ}.
The product X×Y is equipped with affine covers {Uα×Vβ}, with all transition
functions clearly regular, hence it is also an algebraic variety.

EXERCISE: Prove that X × Y is a product of X and Y in the category
of algebraic varieties.

THEOREM: Let V,W be vector spaces, and Z the set of decomposable
tensors in V ⊗W , and S = PZ the corresponding Segre variety. Then S is
the product of projective spaces PV and PW .

Proof. Step1: Let λ : V −→ C be a linear functional. Then λ defines a linear
map Ψλ : Z −→W mapping v ⊗ w to λ(v) ⊗ w. In the chart Uλ ⊂ S given
by Ψλ(z) 6= 0, this map defines a morphism of varieties Uλ −→ PW , which
is clearly independent from the choice of λ. Since

⋂
λUλ = ∅, the natural

projection πW : S −→ PW is an algebraic morphism.

Step 2: The map πW × πV : S −→ PV × PW is bijective and algebraic. To
prove that it is an isomorphism, it remains to prove that the inverse map is
also algebraic. However, the inverse map takes v ∈ V,w ∈ W and maps them
to v ⊗ w ∈ Z; this map is polynomial.
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Product of projective varieties

This gives a corollary

COROLLARY: A product of projective varieties is projective.

Proof. Step1: Let X ⊂ CPn, Y ⊂ CPm be projective varieties. Then X × Y
is a subvariety of the Segre variety CPn × CPm which is projective.

Step 2: It remains to show that an algebraic variety X ⊂ CPn of a projective

variety is projective. Then the cone C(X) is an algebraic subvariety of Cn+1\0.

Locally in Zariski topology, C(X) is defined by an ideal I ⊂ OUi. Let Ui :=

Cn+1\Dhi, where hi is a polynomial and Dhi its zero set. Writing 1 =
∑
gihi

and replacing generators αi of I by αi (
∑
i gihi)

N as in Lecture 20, we obtain

that I can be generated by globally defined polynomials.

Step 3: Then C(X) is an algebraic cone, and X is a projective variety, as

proven in Lecture 19.
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Projection with center in a point

DEFINITION: Let H = CPn−1 ⊂ CPn be a hyperplane, associated to a

vector subspace V = Cn ⊂ Cn+1 = W , and p /∈ H a point in CPn. Given

x ∈ CPn\{p}, define projection of x to H with center in p as intersection

π(x) := V ∩ 〈x, p〉. By construction, π(x) is a 1-dimensional subspace in

V , that is, a point in H.

CLAIM: The projection map π : CPn\{p} −→H is an algebraic morphism.

Proof: Assume that V = ker(µ), where µ : W −→ C is a linear functional.

For any x ∈ W\〈p〉, one has π(x) = ker µ ∩ 〈x, p〉. In affine coordinates this

gives π(x) = µ(x)p− µ(p)x, which is clearly regular.
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Veronese curve (reminder)

EXAMPLE: Veronese map V : CP1 −→ CP2 takes a point with homogeneous

coordinates x : y to x2 : xy : y2. Its image is a subvariety in CP2 given by

a homogeneous equation ac = b2.

CLAIM: Veronese map CP1 −→ CP2 is an isomorphism from CP1 to a

subvariety Z given by ac = b2.

Proof. Step1: We cover Z by two charts, Ua := {(a : b : c) ∈ CP2 | a 6= 0}
and Uc := {(a : b : c) ∈ CP2 | c 6= 0}. Since ac = b2, all points in Z with b 6= 0

belong to Ua ∩ Uc, hence Ua ∪ Uc = Z.

Step 2: In Ua, the map Ψ : Z −→ CP1 is defined by a : b : c 7→ 1 : b
a. If

a : b : c = x2 : xy : y2, we have Ψ(a : b : c) = 1: y
x, hence it is inverse to V in

the chart 1: z on CP1. In Uc, we define Ψ as Ψ(a : b : c) = b
c : 1. By the same

reason, Ψ is inverse to V in the chart z : 1 in CP1. These maps agree on

Ua ∩ Uc, because in this set both a and c are invertible, giving(
b

c
: 1
)

= (b : c) = (ab : ac) = (ab : b2) =
(

1:
b

a

)
.
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Quadric

DEFINITION: Let g be a non-degenerate bilinear symmetric form on V =

Cn+1. A (non-degenerate) quadric is a subset of PV given by an equation

g(x, x) = 0.

CLAIM: All quadrics are isomorphic.

Proof: Indeed, all non-degenerate bilinear symmetric forms over C are related

by a linear transform (use an orthonormal basis).

CLAIM: A 0-dimensional quadric is 2 points in CP1.

CLAIM: A 1-dimensional quadric Q1 is isomorphic to CP1.

Proof: Indeed, Q1 can be given by an equation xy − z2 = 0, which is an

equation for the Veronese curve.
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Orthogonal group acts transitively on quadrics

CLAIM: The group O(V ) of orthogonal linear automorphisms of V acts
transitive on any non-degenerate quadric Q.

Proof: Let v ∈ V be a vector such that g(v, v) = 0, and w a vector such that
g(v, w) 6= 0. Let w1 := µv + w, where µ = −2g(w,w)

g(v,w) . This vector satisfies

g(w1, w1) = g(w,w) + 2µg(v, w) = 0 and g(v, w1) 6= 0. Replacing w by w1
g(v,w1),

we may assume that g(v, w) = 1 and g(w,w) = 0. Denote by W the orthogonal
complement to V0 := 〈v, w〉, and choose an orthonormal basis z1, ..., zn in W .
The matrix of g in the basis (v, w, z1, ..., zn) is written as

0 1 0 ... 0
1 0 0 ... 0
0 0 1 ... 0
...
0 0 0 ... 1


If v′ is another non-zero vector with g(v′, v′) = 0, we find another basis
(v′, w′, z′1, ..., z

′
n) where g has the same matrix. Then the linear map A

putting v to v′, w to w′ and zi to z′i is orthogonal.

COROLLARY: All (non-degenerate) quadrics are smooth.

Proof: Some points on a quadric are smooth (Lecture 17). Since the group
O(V ) acts on quadric transitively, all points are equivalent.
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All quadric are rational

DEFINITION: An algebraic variety over C is called rational if it is birational

to CPn

PROPOSITION: All quadrics are rational.

Proof. Step1: Let Q ⊂ CPn = PV be a quadric defined by a quadratic form

h, and z ∈ Q a point. Consider the projection map ξPV \z −→ CPn−1 = PV1

with center in z. For a point v ∈ Q distinct from z, denote by lv the projective

line CP1, associated with a 2-dimensional subspace 〈z, v〉 ⊂ V connecting v

and z. A non-zero quadratic equation cannot have more than two solutions

on CP1, hence the projection ξ : Q\z −→ CPn−1 is genericaly 1-to-1.

Step 2: For any x ∈ PV1, the quadratic polynomial h restricted to 〈z, x〉 is

divisible by a linear form λ which vanishes in z. This gives a linear form h
λ on

〈z, x〉. Unless h vanishes on 〈z, x〉, the form h
λ is non-zero, and gives a point

in Q ∩ P〈z, x〉. We obtained an inverse map to ξ.
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Quadrics in CP3

THEOREM: A non-degenerate quadric in CP3 is isomorphic to the image

of Segre embedding CP1 × CP1 ↪→ CP3.

Proof: Let V1, V2 be 2-dimensional complex spaces, and V = V1 ⊗ V2. The

tensor α ∈ V1⊗V2 is decomposable if and only if its matrix (aij) is denegerate,

which happens when det(aij) = a11a22−a12a21 = 0. However, a11a22−a12a21

is a non-degenerate quadratic form on V .
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Affine quadrics in R3

DEFINITION: Let Q be a quadratic form on V and λ a linear form. Then

the set S := {v ∈ V | Q(v) + λ(v) + c = 0} is called affine quadric.

DEFINITION: Let Q be a quadratic form on R3 of signature (2,1), and

c 6= 0. The affine quadric S := {v ∈ V | Q(v) = c} is called hyperboloid.

When c > 0, it is called hyperbolic, or one-sheeted hyperboloid, or ruled

hyperboloid and when c < 0, it is elliptic, or two-sheeted hyperboloid
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Quadratic forms on R2

DEFINITION: Let q be a quadratic form on a vector space V . A vector

v ∈ V is called isotropic if q(v) = 0.

Proposition 1: Let Q(xe1 + ye2) = ax2 + by2 + 2cxy be a non-degenerate

quadratic form on R2. Then the set {v ∈ R2 | Q(v) = 0} if isotropic

vectors is either a union of two lines intersecting in 0, or {0} depending

on signature.

Proof: If Q is positive definite or negative definite, it is {0}. If the signature

is (1,1), let u, v ∈ R2 be the basis such that the corresponding bilinear sym-

metric form satisfies q(u, u) = 1, q(v, v) = −1, q(u, v) = 0. Then the vectors

w+ := u+v
2 and w− := u−v

2 are isotropic and satisfy q(w+, w−) = 1. No lin-

ear combination of form aw+ + bw−, with a, b 6= 0 can be isotropic, because

q(aw+ + bw−) = a2q(w+, w+) + b2q(w−, w−) + 2abq(w−, w+) = 2ab.
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Ruled hyperboloid

PROPOSITION: Let Q be a quadratic

form on R3 of signature (2,1), c > 0. and

S := {v ∈ V | Q(v) = c} the corresponding

hyperboloid. Then for any tangent plane W ,

the intersection W ∩ S is union of two lines.

Proof: Let s be the tangent point, and choose an

affine coordinate system such that s = 0. Then

the tangent plane W is linear, and Q(v) − c is a

quadratic form on W of signature (1,1) (Remark

1). Then W ∩ S is a union of two lines by

Proposition 1.

DEFINITION: A 2-dimensional surface S ⊂ R3 is called ruled if each point

of S is contained on a line l ⊂ S.
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Quadrics of rotation

DEFINITION: Fix a positive definite form g on R3, and let Q be a non-
degenerate quadratic form on R3. In appropriate orthonormal coordinates, Q
can be written as

Q(x, y, z) = ±
x2

a2
±
y2

b2
±
z2

c2
. (∗)

The coordinate axes of this coordinate system are called axes of the quadric
S. They are defined uniquely up to an automorphism of R3 preserving
g and Q.

DEFINITION: We say that a quadric S := {v ∈ V | Q(v) = c} has
rotational symmetry if it is preserved by an isometric rotation of R3.

CLAIM: A quadric has rotational symmetry if and only if two of the
coefficients in (*) are equal.

Proof: Clearly, if (say) two of the coefficients in (*) are equal and Q(x, y, z) =
x2

a2 + y2

a2 ± z2

c2
, then rotation around an axis x = y = 0 preserves Q.

Conversely, when all coefficients in (*) are different, the orthonormal basis
(x, y, z) is determined uniquely up to a sign, and any isometry preserving Q
also preserves these three axes.
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Hyperboloid of rotation

PROPOSITION: Let l1, l2 ⊂ R3 be two non-perpendicular skew lines (that
is, likes which are not parallel and don’t intersect), and S a surface of rotation
obtained by rotating l1 around l2. Then S is a hyperboloid of rotation.
Conversely, any ruled hyperboloid of rotation is obtained this way.

Proof: Let S be a hyperboloid of rotation. Then S contains a line. Since it
is rotationally symmetric, it can be obtained by rotating this line around the
central axis.

Conversely, any two non-perpendicular skew lines can be related by affine
transform commuting with rotation around the first line (prove it), and an
affine transform maps quadrics to quadrics.
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