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Decomposable tensors
DEFINITION: A rank of a linear map V — W is dimension of its image.

DEFINITION: Let VW be vector spaces. A tensor a € V @ W is called
decomposable if a=z®y, for somex e V,y e W.

CLAIM: V@ W = Hom(V* W) for any finitely-dimensional spaces V, W.

Proof: For any tensor a € VW and p € V*, define ((p,v®w) := (p,v)w. This
map is linear on v, w, hence is extended to a linear map VW — Hom(V*, W).
This map is clearly injective. To see that it is an isomorphism, compare
dimensions. =

PROPOSITION: A tensor ac V® W is decomposable if and only if the
rank of the corresponding map : V* — W is < 1.

Proof: Since ((p® x®y) = (p,x)y, the rank of k is 1 for any decomposable
a. Conversely, let w € W be a generator of the image of k. Then a € V® (w),
and all elements in this space are decomposable. =
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Algebraic cones (reminder)

DEFINITION: Let M C CP™ be a projective variety, defined by a graded
ideal I* C Clz1,...,2,41], and C(M) C C"t1 be the subset defined by the same
ideal. Then C(M) is called the cone or the algebraic cone of M.

REMARK: A subvariety X ¢ C"*!1 is a cone if and only if it is C*-
invariant (here, as elsewhere, C* acts on C*t1 by homotheties, p(¥)(v) = tv).
A C*-invariant subvariety determines M in a unique way.

DEFINITION: Projectivization of a homothety invariant subset Z C cn+l
is the set Z1 C CP™ of all lines contained in Z. In this case, Z = C(Zq).

DEFINITION: The Graded ring of a projective variety is the ring of ho-
mogeneous functions on its cone. Using the notation defined above, it is a

ring Clzy, ..., zp41]/1".
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Segre variety

COROLLARY: The set Z Cc VW of decomposable tensors is an affine
variety.

Proof: Let vq,...,vn be basis in V, and w1y, ...,wy basis in W. For any tensor
a =3, ja;;v; ®w;, the rank of a considered as a map from V* to W is equal
to the rank of the matrix (a;;). This matrix has rank 1 if and only if all 2 x 2
minors vanish. This is an algebraic condition. m

DEFINITION: Let V,W be vector spaces. Segre variety is the projectiviza-
tion of the set Z C VQ W of decomposable tensors.
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Product of affine varieties (reminder)

REMARK: Recall that product of objects X,Y in category C is an object
X XY such that Moue(Z, X) x Moe(Z,Y) = Moe(Z, X xY).

LEMMA: Let A, B be finitely-generated, reduced rings over C, and R =
A ®c B their product. Then R is reduced (that is, has no nilpotents).

THEOREM: Let A, B be finitely generated rings without nilpotents, and
R := A®c B. Then Spec(R) = Spec(A) x Spec(B). Moreover, Spec(R) is
the product of the varieties Spec(A) and Spec(B) in the category of
affine varieties.
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Segre variety is a product

REMARK: Let X,Y be algebraic varieties, with affine covers {Uy} and {Vj}.
The product X xY is equipped with affine covers {Uq X V}, with all transition
functions clearly regular, hence it is also an algebraic variety.

EXERCISE: Prove that X x Y is a product of X and Y in the category
of algebraic varieties.

THEOREM: Let VW Dbe vector spaces, and Z the set of decomposable
tensors in V@ W, and S = PZ the corresponding Segre variety. Then S is
the product of projective spaces PV and PW.

Proof. Stepl: Let A: V — C be a linear functional. Then X\ defines a linear
map W, : Z— W mapping v ® w to A(v) ® w. In the chart Uy C S given
by Wy(z) # 0, this map defines a morphism of varieties Uy — PW, which
is clearly independent from the choice of A. Since Ny U, = 0, the natural
projection my : S — PW is an algebraic morphism.

Step 2: The map my Xy : S — PV X PW is bijective and algebraic. To
prove that it is an isomorphism, it remains to prove that the inverse map is
also algebraic. However, the inverse map takes v € V,w € W and maps them
tov®w € Z; this map is polynomial. =
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Product of projective varieties
T his gives a corollary
COROLLARY: A product of projective varieties is projective.

Proof. Stepl: Let X C CP™ Y C CP™ be projective varieties. Then X xY
is a subvariety of the Segre variety CP"™ x CP™ which is projective.

Step 2: It remains to show that an algebraic variety X C CP™ of a projective
variety is projective. Then the cone C(X) is an algebraic subvariety of C»*1\0.
Locally in Zariski topology, C(X) is defined by an ideal I C Opy,. Let U; :=
(C”‘H\th., where h; is a polynomial and Dy, its zero set. Writing 1 = }_ g;h;
and replacing generators «a; of I by «; (3, gihi)N as in Lecture 20, we obtain
that I can be generated by globally defined polynomials.

Step 3: Then C(X) is an algebraic cone, and X is a projective variety, as
proven in Lecture 19. m
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Projection with center in a point

DEFINITION: Let H = CP" 1 c CP"™ be a hyperplane, associated to a
vector subspace V = C"* c C"*1 = W, and p ¢ H a point in CP". Given
x € CP™\{p}, define projection of x to H with center in p as intersection
w(x) := V N {x,p). By construction, n(x) is a 1-dimensional subspace in
V, that is, a point in H.

CLAIM: The projection map n : CP™"\{p} — H is an algebraic morphism.

Proof: Assume that V = ker(u), where n: W — C is a linear functional.
For any = € W\(p), one has n(x) = kerun {z,p). In affine coordinates this
gives w(x) = pu(x)p — u(p)x, which is clearly regular. =



Algebraic geometry I, lecture 22 M. Verbitsky

Veronese curve (reminder)

EXAMPLE: Veronese map V : CPl — CP? takes a point with homogeneous
coordinates z: y to z2: zy: y2. Its image is a subvariety in CP?2 given by
a homogeneous equation ac = b2,

CLAIM: Veronese map CP! — CP? is an isomorphism from CP! to a
subvariety Z given by ac = b2.

Proof. Stepl: We cover Z by two charts, Uy := {(a: b: ¢) € CP?2 | a # 0}
and Uz :={(a: b: ¢) € CP2 | ¢# 0}. Since ac = b2, all points in Z with b # 0
belong to U, N U., hence U, UU, = Z.

Step 2: In U,, the map W : Z —CPl is defined by a: b:c +— 1 : g. If
a:b:c =z zy: y?, we have W(a: b:c) = 1: ¥, hence it is inverse to V in
the chart 1: z on CPL. In U, we define W as W(a: b: ¢) = g: 1. By the same
reason, W is inverse to V in the chart z: 1 in CPl. These Mmaps agree on

U, NUe, because in this set both a and ¢ are invertible, giving
b b
(—: 1) = (b: ¢) = (ab: ac) = (ab: b°) = (1: —) :

C a
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Quadric

DEFINITION: Let g be a non-degenerate bilinear symmetric form on V =
crtl, A (non-degenerate) quadric is a subset of PV given by an equation

g(xz,z) = 0.
CLAIM: All quadrics are isomorphic.

Proof: Indeed, all non-degenerate bilinear symmetric forms over C are related
by a linear transform (use an orthonormal basis). m

CLAIM: A 0O-dimensional quadric is 2 points in CPl. =
CLAIM: A 1-dimensional quadric @Qq is isomorphic to CP1.

Proof: Indeed, Q1 can be given by an equation xzy — 22 = O, which is an
equation for the VVeronese curve. m
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Orthogonal group acts transitively on quadrics

CLAIM: The group O(V) of orthogonal linear automorphisms of V acts
transitive on any non-degenerate quadric Q.

Proof: Let v € V be a vector such that g(v,v) = 0, and w a vector such that

g(v,w) #= 0. Let wy := puv + w, where p = —29(ww This vector satisfies

g(wy,w1) = g(w,w) + 2ug(v,w) = 0 and g(v,wq1) #= 0. Replacing w by ( 1)
we may assume that g(v,w) = 1 and g(w,w) = 0. Denote by W the orthogonal
complement to Vp := (v, w), and choose an orthonormal basis z1,...,zn in W.
The matrix of g in the basis (v, w, 21, ..., zn) iS written as

0 10 .. 0
1 00 .. 0
0 01 .. 0
0O 00 .. 1
If v is another non-zero vector with g(v/,v') = 0, we find another basis

(v, w', 2], ...,z;,) where g has the same matrix. Then the linear map A
putting v to v/, w to v’ and z; to z is orthogonal. =

COROLLARY: All (non-degenerate) quadrics are smooth.

Proof: Some points on a quadric are smooth (Lecture 17). Since the group
O(V') acts on quadric transitively, all points are equivalent. =
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All quadric are rational

DEFINITION: An algebraic variety over C is called rational if it is birational
to CP™

PROPOSITION: All quadrics are rational.

Proof. Stepl: Let Q C CP" = PV be a quadric defined by a quadratic form
h, and z € Q a point. Consider the projection map ¢(PV\z — CP"~ 1 = P\
with center in z. For a point v € Q distinct from z, denote by [, the projective
line CP1, associated with a 2-dimensional subspace (z,v) C V connecting v
and z. A non-zero quadratic equation cannot have more than two solutions
on CP!, hence the projection ¢ : Q\z — CP™ 1 is genericaly 1-to-1.

Step 2: For any x € PVj, the quadratic polynomial h restricted to (z,z) is

divisible by a linear form A which vanishes in z. This gives a linear form % on

(z,z). Unless h vanishes on (z,x), the form % iS non-zero, and gives a point

in QN P(z,x). We obtained an inverse map to £&. =
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Quadrics in CP3

THEOREM: A non-degenerate quadric in CP3 is isomorphic to the image
of Segre embedding CPl x crl — CP3.

Proof: Let V1, Vs be 2-dimensional complex spaces, and V = V7 ® Vo. The
tensor a € V1 ® Vo is decomposable if and only if its matrix (a;;) is denegerate,
which happens when det(aij) = aj1ao2—aioan1; = 0. However, ajjaoo—ajinany
IS @ non-degenerate quadratic form on V. m
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Affine quadrics in R3

DEFINITION: Let Q be a quadratic form on V and X\ a linear form. Then
theset S:={veV | QW)+ A(v)+ c= 0} is called affine quadric.

DEFINITION: Let Q be a quadratic form on R3 of signature (2,1), and
c # 0. The affine quadric S :={v eV | Q(v) = c} is called hyperboloid.
When ¢ > 0, it is called hyperbolic, or one-sheeted hyperboloid, or ruled
hyperboloid and when ¢ < 0O, it is elliptic, or two-sheeted hyperboloid

S

o~
P
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Quadratic forms on R2

DEFINITION: Let g be a quadratic form on a vector space V. A vector
v € V is called isotropic if q(v) = 0.

Proposition 1: Let Q(ze1 + yes) = ax? + by? + 2caxy be a non-degenerate
quadratic form on R2. Then the set {v € R? | Q(v) = 0} if isotropic
vectors is either a union of two lines intersecting in 0, or {0} depending
on signature.

Proof: If Q is positive definite or negative definite, it is {0}. If the signature
is (1,1), let u,v € R2 be the basis such that the corresponding bilinear sym-
metric form satisfies q(u,u) = 1,q(v,v) = —1,q(u,v) = 0. Then the vectors
wy = 5+ and w_ (= 5% are isotropic and satisfy ¢(wy,w-) = 1. No lin-
ear combination of form awy + bw—, with a,b 7 0 can be isotropic, because

qlawy +bw_) = a2q(w_|_,w_|_) + v2q(w_, w_) + 2abg(w_, w4 ) = 2ab. =
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Ruled hyperboloid

PROPOSITION: Let @ be a quadratic
form on R3 of signature (2,1), ¢ > 0. and
S ={v eV | Q) = c} the corresponding
hyperboloid. Then for any tangent plane W,
the intersection W NS is union of two lines.

Proof: Let s be the tangent point, and choose an
affine coordinate system such that s = 0. Then
the tangent plane W is linear, and Q(v) —c is a
quadratic form on W of signature (1,1) (Remark
1). Then W NS is a union of two lines by
Proposition 1. =

DEFINITION: A 2-dimensional surface S C R3 is called ruled if each point
of S is contained on a linel C S.
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Quadrics of rotation

DEFINITION: Fix a positive definite form g on R?’, and let Q be a non-
degenerate quadratic form on R3. In appropriate orthonormal coordinates, @
can be written as

2 2 2

x Y z

The coordinate axes of this coordinate system are called axes of the quadric
S. They are defined uniquely up to an automorphism of R3 preserving
g and Q.

DEFINITION: We say that a quadric S := {v € V | Q(v) = ¢} has
rotational symmetry if it is preserved by an isometric rotation of R3.

CLAIM: A quadric has rotational symmetry if and only if two of the
coefficients in (*) are equal.

Proof: Clearly, if (say) two of the coefficients in (*) are equal and Q(z,y,z) =
2 2 2
2—2 -+ Z—Q + i—Q then rotation around an axis x = y = 0 preserves Q).

Conversely, when all coefficients in (*) are different, the orthonormal basis
(z,y,z) is determined uniquely up to a sign, and any isometry preserving Q
also preserves these three axes. m
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Hyperboloid of rotation

PROPOSITION: Let [1,l» C R3 be two non-perpendicular skew lines (that
is, likes which are not parallel and don't intersect), and S a surface of rotation
obtained by rotating [1 around I»,. Then S is a hyperboloid of rotation.
Conversely, any ruled hyperboloid of rotation is obtained this way.

Proof: Let S be a hyperboloid of rotation. Then S contains a line. Since it

IS rotationally symmetric, it can be obtained by rotating this line around the
central axis.

Conversely, any two non-perpendicular skew lines can be related by affine
transform commuting with rotation around the first line (prove it), and an
affine transform maps quadrics to quadrics. =
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