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Hilbert function and Policaré series

DEFINITION: Let Ax = @;>0 A; be a graded ring of finite type (that is, with
each graded component finite-dimensional, and Ag = C), and M, a graded
Asx-module, that is, a module My = @;>0 M; such that A;Me C Mgy .. Hilbert
function is defined as h(n) := dim M, for all n € Z=9. Poincaré series is
generating series for the Hilbert function, Py, (t) := ;50 h(i)t"
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Policare series are rational

THEOREM: Let A« be aring of finite type generated by A1, and M, a finitely
generated As-module. Then its Poincaré series is a rational function of

form P(t) = (?_(gk where Q(t) is a polynomial.

Proof. Step 1: Let x € A1, and Liz(m) := xm be the multiplication by .
Consider the exact sequence

0 — K, — M, La, Mp4q1 — Cphp1 — 0,

where K, is kernel of the map L, and Cy its cokernel. Then dim(K,) —
dim(Mp) +dim(M,41)—dimCy,41 = 0, giving Py, (t)(1—t) = Po, (t) —tPg ().

Step 2: We shall use induction on dimA;. When dimA; = 0, Ay = C,
and any finitely generated module My is finite-dimensional. Then Py, (t) is a
polynomial.

Step 3: Let By := As/(x). Since L; acts trivially on Cx and on K, we can
consider Cx and K as Bis-modules. By induction assumption, the correspond-

ing Poincare series satisfy Po, (t) = % and Py (t) = % Then

() = P = P )

is a rational function of the same nature. =
3
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(1-t)" =52 ("TET )k

REMARK: We assume (_”1) = 0 for n > 0 and (j) =1.

LEMMA: (1 —)7" =52 o ("TF 1)k (%).

Proof. Step 1: Derivative of (1 —t)~" is equal to (1 —¢)~"~1. On the other
hand, derivative of the right hand side of (*) gives

d tk—1 +k L b=kl & +1
dtkzo(rr_l )t Zk(rr_l )tk == Z(“rl)(r =

B (r + ! ;& (r—l—l)' g r+ 1
_l;(l+1)(r—1)!(l+1)!t _Z(r—l)'(l)' _rl;o( r )t

Denoting the right hand side of (*) by V,(t), we obtain that V/(t) = rV,.11(¢).

Step 2: Assume that (*) is true: (1 —t)™" = V,.(¢). Applying derivative to
both terms, we obtain (1 —¢) "1 = rVy4+1(t), which gives us (*) for r 4+ 1.
Now (*) follows from induction in r. =
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Hilbert polynomial

THEOREM: Let As be a ring of finite type generated by Ay, and My a
finitely generated Ax-module. Then there exists a polynomial H(n) such
that the Hilbert function h(n) satisfies h(n) = H(n) for all n > 0.

Proof: Let P(t) := Y ;>0 h(i)t* be the Poincaré series of My. Then P(t) =

(?—(gk where Q(t) = %, ant™ is a polynomial, giving

n X o r+k—-1
— ) k
P(t)_;azt 2 ( . )t .
1=0 k=0
For each k, this gives
& r+k—i—1
h(k) = ' * ok
(k) goaz( ) G
When k£ > 1, the binomial coefficients
<r+k—i—1> (k=i 1)(k-i+2)(k—i+3)..(k—it+7r—1)
r—1 o (r —1)!
are degree r — 1 polynomials in k, hence the sum (**) is also polynomial. =

DEFINITION: In these assumtions, H(n) is called the Hilbert polynomial
of the module M..
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Hilbert polynomial of the ring of polynomials

CLAIM: Let A; be a graded ring, P(t) its Poincaré series, and H(n) be its

Hilbert polynomial. Write P(t) = (?_(gd' where (1) # 0. Then deg H(n) =
d— 1.

Proof: H(n) is a sum of several terms proportional to (n — 714+ 1)(n — 7 +
2)(n—14+3)...(n—14+d— 1), which is a polynomial of of degree d — 1. =

COROLLARY: Let Ay = Clz1,...,249] be the ring of polynomials. Then
its Poincaré series satisfies P;(t) = (1 —t)~%¢. In particular, its Hilbert
polynomial has degree d.

Proof: Consider the exact sequence

L,
0— Kn— Ap —5% Apy1 — Chy1 — 0.

Clearly, Kx =0 and Cx = Clz1, ..., 24]/(24) = C[z1,...,24—1]. Then
P4 (t)(1 —t) = Pc, (t) as shown above, which gives P;(t) = Py 1(1 —t)~1.
However, P;(t) = 14+t4+t24..., giving P;(t) = (1—t)~ L. Then P;(t) = (1—t)~ <
m

§)
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Hilbert polynomial and dimension

THEOREM: Let A« be the graded ring of a projective variety X, and d the
degree of its Hilbert polynomial Hy, (n). Then d =dim X + 1.

Proof. Step 1: Let M, be a finitely generated graded A.-module with
generators of degree syp,...,sr. Then hpr(n) < X' _1hy,(n—s;). Therefore,
deg Hyy,(n) < deg Hy, (n).

Step 2: Let As C By, with By finitely generated as an A.-module. Then
hp,(n) > hy,(n), hence deg Hy (n) = deg Hp (n). Therefore, for any finite
dominant C*-invariant morphism C(X) — C(Y) of the corresponding cone
varieties, the degrees of their Hilbert polynomials are equal.

Step 3: Let O (X) := C(X)U{0}. We consider C4 (X)) as an affine subvariety
of C". By Noether normalization lemma, for an appropriate linear projection
m: C" — C% the morphism 7 : Cy(X)— C% is finite and dominant. Then
deg H4 (n) = deg H@@d(”) = d. However, C,(X) is also d-dimensional,

because it admits a finite, dominant map to C¢.

Step 4: We have shown that deg H4, (n) =dimC(X). However, dmC(X) =
dim X + 1, because C(X) is fibered over X with 1-dimensional fiber C*. =

-
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Semicontinuity

DEFINITION: For any sequence {x;} of points in a topological space X,
a limit point of {z;} is any point in x € X such that any neighboorhood
of x contains infinitely many elements of the sequence. For any sequence
{z;} C R limit superior limsupz; is supremum of all its limits, and limit
inferior liminf x; is inferior of all its limits.

DEFINITION: Let X be a topological space, and ¢ : X — R a function.
The function ¢ is called upper semi-continuous if for any sequence {x;} C X
and any limit point z € limx;, one has p(x) > liminf(p(x;)), and lower semi-
continuous if o(x) < limsup(p(x;)).

EXAMPLE: The raindrop function ¢ : R — Q vanishes on irrational num-
bers, and satisfies £&(p/q) = 1/q for any irreducible fraction p/q € Q. Then &
IS upper semicontinuous.
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Semicontinuity and preimages

CLAIM: Let o : X — R be function. Then ¢ is upper semicontinuous if
and only if ¢~ 1([a,[) is closed for all a.

Proof. Step 1: Suppose that ¢ is upper semicontinuous. Let {z;} be a
sequence of points in ¢~ 1([a,o[). Then ¢(z) > a for any z € limz,;, hence
0 1([a, [) is closed.

Step 2: Conversely, suppose that ¢~ 1([a, oo[) is closed for all a. Then for any
{z;} € o 1([a — e,00[), any limit point z satisfies p(z) > a —e. Therefore, for
any sequence x; such that lim ¢(x;) > a, any limit point = satisfies p(z) > a. =
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Semicontinuity in Zariski topology

DEFINITION: Let A be an algebraic variety. Constructible set is a subset
A1 C A obtained from Zariski closed sets by taking complements, finite unions
and finite intesections.

PROPOSITION: Let X be an algebraic variety with Zariski topology, and
© - X — 729 an upper semicontinuous function. Then ¢ takes finitely
many values, and for each t, the set v~ 1(¢) is constructible.

Proof: As shown above, the set Z, := o 1([a, oo[) is Zariski closed. This gives
a chain of embedded Zariski closed varieties parametrized by a & 779, Any
decreasing chain of Zariski closed varieties stabilizes, hence for any sequence
a1 < ap < ..., only finitely many Z,, are distinct. The sets

e () = ¢ H([t, o)\ H([t + 1, 00])
are constructible for all t. =

The main result of today’s lecture:

THEOREM: (Semicontinuity of dimension)

Let Z7 C CP"™ x X be an algebraic subvariety, and = : CP"™ x X — X the
projection. For any z € X, define Z, := Zn=n1(z). Then dimZ, is an
upper semicontinuous function of x.
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Macaulay matrices

DEFINITION: Let W C C[zg,...,zn]¢ be a subspace in the space of ho-
mogeneous polynomials generated by wiq,...,wr, and My, : Clzo, ..., zn]* ¢ ®
W — Clzq, ..., 2n]® be the multiplication map. Then My, is called the Macaulay
matrix. The rows of this matrix are enumerated by the pairs (w;, 0), where
6 is a monomial of degree n — d, and the columns by monomials & of degree
n. If we Wfite w;0 = Za;f@gj, the entry of My, corresponding to ((w;,0),&) is
given by a;’e.

CLAIM: Let I* C C[zp, ..., zn] be a graded ideal generated by W C Cl[zo, ..., zn]%.
Then dim I° = rk My, .

11



Algebraic geometry I, lecture 24 M. Verbitsky

Macaulay matrices and Hilbert function

CLAIM: Let X be an affine variety, and wy,...,wr : X — C[zg, ..., zn]¢ func-
tions with values in the space C|zq, ...,zn]d of homogeneous polynomials. Let
I« be the ideal generated by wi(x),...,wr(x), Asx := Clzq, ..., 2n] /I« the quotient
ring, and hgz(s) its Hilbert function. Then h;(s) Is upper semicontinuous
as a function of z € X, for all s € Z>0.

Proof: Since dim I® = rk Mj;,, one has hy(s) = dimClzo, ..., zn]® — rk My;,. The
number rkaj’V IS rank of maximal non-degenerate minor 9 in the matrix
Mﬁ,. This minor is non-zero in a Zariski open subset Ugpp, hence the set
{zx € X | rkM$, > w} is Zariski open for all w € Z>%. Then the set
{x € X | hz(s) > w} is closed. =

12
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Semicontinuity of Hilbert polynomial

COROLLARY: Let X be an affine variety, and wq, ...,wr : X — Clzo, ..., 2n]®
functions with values in the space (C[zo,...,zn]d of homogeneous polynomials.
Let I« be the ideal generated by wy(x),...,wr(x), Ax := C|zq, ..., 2n] /Ix the quo-
tient ring, hz(s) its Hilbert function, and H;(¢) its Hilbert polynomial. Then
the degree of the Hilbert polynomial H;(t) is also upper semicontinuous
as a function of x € X.

Proof. Step 1: Let {z;} be a sequence of points such that deg Hy,;(t) > d, and
x its limit. We need to show that deg H;(t) > d. Passing to a subsequence,
we may assume that deg H;,(t) = d. Passing to a subsequence again, we
may also assume that for each t € Z>0, the sequence hy, (1), ha,(t),...
stabilizes to h(t) € Z; indeed, h;(t) as a function of x takes only finitely
many values, by semicontinuity. Then the sequences hy, (1), hs;(2),...he, (1), ...
and h(1),h(2),...h(t),... are equal outside of finitely many ¢'s, and the corre-
sponding Hilbert polynomials Hy, (t) = H(t) are equal.

Step 2: If the Hilbert polynomial H;(t) has smaller degree than H(t), one
would have H;(t) < H(t) for almost all ¢, but this is impossible because
Hy(t) = hz(t) and h(t) = H(t) for almost all ¢, and h(t) < hg(t) for all ¢ by
semicontinuity of hy(¢). =
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Semicontinuity of dimension

THEOREM: (Semicontinuity of dimension)

Let Z C CP"™ x X be an algebraic subvariety, and = : CP" x X — X the
projection. For any z € X, define Z, .= Zn=(x). Then dimZ, is an
upper semicontinuous function of z.

Proof: Since the statement is local in X, we may assume that X is affine.
Then Z is defined by a graded ideal I* C R := Ox|z0,...,2n]. Let wq,...,wr
be generators of the ideal I.. Multiplying w; by all appropriate monomials
if necessary, we may assume that degw; = d. We can consider wq,..., wyr
as regular functions on X with values in the space C[zo,...,zn]d of homo-
geneous polynomials of degree d. Then Z, is the set of common zeros of
wi(x),...,wr(x) € (C[zo,.. zn]%. Therefore, the degree of the Hilbert polyno-
mial of the rlng ZO’ wrg ) IS equal to dim Z,. We reduced semicontinuity
of dimension to the ollowmg proposition, which is already proven.

CLAIM: Let X be an affine variety, and wyq,...,wr : X — C[zg, ..., zn]% func-
tions with values in the space C|zq, ...,zn]d of homogeneous polynomials. Let
I« be the ideal generated by wi(x),...,wr(x), Asx := Clzq, ..., 2n] /I« the quotient
ring, and H;(s) its Hilbert polynomial. Then deg H,(s) is upper semicon-
tinuous as a function of z. m

14



