Geometria Algébrica I

lecture 24: Hilbert polynomial and semicontinuity of dimension

Misha Verbitsky

IMPA, sala 232

November 16, 2018

Hilbert function and Policaré series

DEFINITION: Let $A_* = \bigoplus_{i \ge 0} A_i$ be a graded ring of finite type (that is, with each graded component finite-dimensional, and $A_0 = \mathbb{C}$), and M_* a graded A_* -module, that is, a module $M_* = \bigoplus_{i \ge 0} M_i$ such that $A_d M_e \subset M_{d+e}$. Hilbert function is defined as $h(n) := \dim M_n$, for all $n \in \mathbb{Z}^{\ge 0}$. Poincaré series is generating series for the Hilbert function, $P_{M_*}(t) := \sum_{i \ge 0} h(i)t^i$.

M. Verbitsky

Policare series are rational

THEOREM: Let A_* be a ring of finite type generated by A_1 , and M_* a finitely generated A_* -module. Then its Poincaré series is a rational function of form $P(t) = \frac{Q(t)}{(1-t)^k}$, where Q(t) is a polynomial.

Proof. Step 1: Let $x \in A_1$, and $L_x(m) := xm$ be the multiplication by x. Consider the exact sequence

$$0 \longrightarrow K_n \longrightarrow M_n \xrightarrow{L_x} M_{n+1} \longrightarrow C_{n+1} \longrightarrow 0,$$

where K_* is kernel of the map L_x and C_* its cokernel. Then dim $(K_n) - \dim(M_n) + \dim(M_{n+1}) - \dim C_{n+1} = 0$, giving $P_{M_*}(t)(1-t) = P_{C_*}(t) - tP_{K_*}(t)$.

Step 2: We shall use induction on dim A_1 . When dim $A_1 = 0$, $A_* = \mathbb{C}$, and any finitely generated module M_* is finite-dimensional. Then $P_{M_*}(t)$ is a polynomial.

Step 3: Let $B_* := A_*/(x)$. Since L_x acts trivially on C_* and on K_* , we can consider C_* and K_* as B_* -modules. By induction assumption, the corresponding Poincare series satisfy $P_{C_*}(t) = \frac{Q_C(t)}{(1-t)^k}$ and $P_{K_*}(t) = \frac{Q_K(t)}{(1-t)^k}$. Then

$$P_{M_*}(t) = \frac{P_{C_*}(t) - tP_{K_*}(t)}{1 - t}$$

is a rational function of the same nature. \blacksquare

 $(1-t)^{-r} = \sum_{k=0}^{\infty} {r+k-1 \choose r-1} t^k$

REMARK: We assume $\binom{n}{-1} = 0$ for $n \ge 0$ and $\binom{-1}{-1} = 1$.

LEMMA: $(1-t)^{-r} = \sum_{k=0}^{\infty} {r+k-1 \choose r-1} t^k$ (*).

Proof. Step 1: Derivative of $(1-t)^{-r}$ is equal to $r(1-t)^{-r-1}$. On the other hand, derivative of the right hand side of (*) gives

$$\frac{d}{dt}\sum_{k=0}^{\infty} \binom{r+k-1}{r-1} t^k = \sum_{k=0}^{\infty} k\binom{r+k-1}{r-1} t^{k-1} \xrightarrow{l:=k-1}_{l=0} \sum_{l=0}^{\infty} (l+1)\binom{r+l}{r-1} t^l = \sum_{l=0}^{\infty} (l+1)\frac{(r+l)!}{(r-1)!(l+1)!} t^l = \sum_{l=0}^{\infty} \frac{(r+l)!}{(r-1)!(l)!} t^l = r\sum_{l=0}^{\infty} \binom{r+l}{r} t^l$$

Denoting the right hand side of (*) by $V_r(t)$, we obtain that $V'_r(t) = rV_{r+1}(t)$.

Step 2: Assume that (*) is true: $(1 - t)^{-r} = V_r(t)$. Applying derivative to both terms, we obtain $r(1 - t)^{-r-1} = rV_{r+1}(t)$, which gives us (*) for r + 1. Now (*) follows from induction in r.

M. Verbitsky

Hilbert polynomial

THEOREM: Let A_* be a ring of finite type generated by A_1 , and M_* a finitely generated A_* -module. Then there exists a polynomial H(n) such that the Hilbert function h(n) satisfies h(n) = H(n) for all $n \gg 0$.

Proof: Let $P(t) := \sum_{i \ge 0} h(i)t^i$ be the Poincaré series of M_* . Then $P(t) = \frac{Q(t)}{(1-t)^k}$, where $Q(t) = \sum_{i=0}^n a_n t^n$ is a polynomial, giving

$$P(t) = \sum_{i=0}^{n} a_i t^i \sum_{k=0}^{\infty} {\binom{r+k-1}{r-1}} t^k.$$

For each k, this gives

$$h(k) = \sum_{i=0}^{n} a_i \binom{r+k-i-1}{r-1} \quad (**)$$

When k > i, the binomial coefficients

$$\binom{r+k-i-1}{r-1} = \frac{(k-i+1)(k-i+2)(k-i+3)\dots(k-i+r-1)}{(r-1)!}$$

are degree r-1 polynomials in k, hence the sum (**) is also polynomial.

DEFINITION: In these assumptions, H(n) is called **the Hilbert polynomial** of the module M_* .

Hilbert polynomial of the ring of polynomials

CLAIM: Let A_* be a graded ring, P(t) its Poincaré series, and H(n) be its Hilbert polynomial. Write $P(t) = \frac{Q(t)}{(1-t)^d}$, where $Q(1) \neq 0$. Then deg H(n) = d-1.

Proof: H(n) is a sum of several terms proportional to (n - i + 1)(n - i + 2)(n - i + 3)...(n - i + d - 1), which is a polynomial of of degree d - 1.

COROLLARY: Let $A_* = \mathbb{C}[z_1, ..., z_d]$ be the ring of polynomials. Then its Poincaré series satisfies $P_d(t) = (1 - t)^{-d}$. In particular, its Hilbert polynomial has degree d.

Proof: Consider the exact sequence

$$0 \longrightarrow K_n \longrightarrow A_n \xrightarrow{L_{z_d}} A_{n+1} \longrightarrow C_{n+1} \longrightarrow 0.$$

Clearly, $K_* = 0$ and $C_* = \mathbb{C}[z_1, ..., z_d]/(z_d) = \mathbb{C}[z_1, ..., z_{d-1}]$. Then $P_{A_*}(t)(1-t) = P_{C_*}(t)$ as shown above, which gives $P_d(t) = P_{d-1}(1-t)^{-1}$. However, $P_1(t) = 1+t+t^2+...$, giving $P_1(t) = (1-t)^{-1}$. Then $P_d(t) = (1-t)^{-d}$.

M. Verbitsky

Hilbert polynomial and dimension

THEOREM: Let A_* be the graded ring of a projective variety X, and d the degree of its Hilbert polynomial $H_{A_*}(n)$. Then $d = \dim X + 1$.

Proof. Step 1: Let M_* be a finitely generated graded A_* -module with generators of degree $s_1, ..., s_r$. Then $h_{M_*}(n) \leq \sum_{i=1}^r h_{A_*}(n - s_i)$. Therefore, $\deg H_{M_*}(n) \leq \deg H_{A_*}(n)$.

Step 2: Let $A_* \subset B_*$, with B_* finitely generated as an A_* -module. Then $h_{B_*}(n) \ge h_{A_*}(n)$, hence deg $H_{A_*}(n) = \deg H_{B_*}(n)$. Therefore, for any finite dominant \mathbb{C}^* -invariant morphism $C(X) \longrightarrow C(Y)$ of the corresponding cone varieties, **the degrees of their Hilbert polynomials are equal.**

Step 3: Let $C_+(X) := C(X) \cup \{0\}$. We consider $C_+(X)$ as an affine subvariety of \mathbb{C}^n . By Noether normalization lemma, for an appropriate linear projection $\pi : \mathbb{C}^n \longrightarrow \mathbb{C}^d$, the morphism $\pi : C_+(X) \longrightarrow \mathbb{C}^d$ is finite and dominant. Then deg $H_{A_*}(n) = \deg H_{\mathcal{O}_{\mathbb{C}^d}}(n) = d$. However, $C_+(X)$ is also *d*-dimensional, because it admits a finite, dominant map to \mathbb{C}^d .

Step 4: We have shown that deg $H_{A_*}(n) = \dim C(X)$. However, dim $C(X) = \dim X + 1$, because C(X) is fibered over X with 1-dimensional fiber \mathbb{C}^* .

Semicontinuity

DEFINITION: For any sequence $\{x_i\}$ of points in a topological space X, a limit point of $\{x_i\}$ is any point in $x \in X$ such that any neighboorhood of x contains infinitely many elements of the sequence. For any sequence $\{x_i\} \subset \mathbb{R}$ limit superior $\limsup x_i$ is supremum of all its limits, and limit inferior $\liminf x_i$ is inferior of all its limits.

DEFINITION: Let X be a topological space, and $\varphi : X \longrightarrow \mathbb{R}$ a function. The function φ is called **upper semi-continuous** if for any sequence $\{x_i\} \subset X$ and any limit point $x \in \lim x_i$, one has $\varphi(x) \ge \liminf(\varphi(x_i))$, and **lower semicontinuous** if $\varphi(x) \le \limsup(\varphi(x_i))$.

EXAMPLE: The raindrop function $\xi : \mathbb{R} \to \mathbb{Q}$ vanishes on irrational numbers, and satisfies $\xi(p/q) = 1/q$ for any irreducible fraction $p/q \in \mathbb{Q}$. Then ξ is upper semicontinuous.

Semicontinuity and preimages

CLAIM: Let $\varphi : X \longrightarrow \mathbb{R}$ be function. Then φ is upper semicontinuous if and only if $\varphi^{-1}([a, \infty[)$ is closed for all a.

Proof. Step 1: Suppose that φ is upper semicontinuous. Let $\{x_i\}$ be a sequence of points in $\varphi^{-1}([a,\infty[)$. Then $\varphi(x) \ge a$ for any $x \in \lim x_i$, hence $\varphi^{-1}([a,\infty[)$ is closed.

Step 2: Conversely, suppose that $\varphi^{-1}([a, \infty[)$ is closed for all a. Then for any $\{x_i\} \in \varphi^{-1}([a - \varepsilon, \infty[), any limit point x satisfies <math>\varphi(x) \ge a - \varepsilon$. Therefore, for any sequence x_i such that $\lim \varphi(x_i) \ge a$, any limit point x satisfies $\varphi(x) \ge a$.

Semicontinuity in Zariski topology

DEFINITION: Let A be an algebraic variety. Constructible set is a subset $A_1 \subset A$ obtained from Zariski closed sets by taking complements, finite unions and finite intesections.

PROPOSITION: Let X be an algebraic variety with Zariski topology, and $\varphi : X \longrightarrow \mathbb{Z}^{\geq 0}$ an upper semicontinuous function. Then φ takes finitely many values, and for each t, the set $\varphi^{-1}(t)$ is constructible.

Proof: As shown above, the set $Z_a := \varphi^{-1}([a, \infty[)$ is Zariski closed. This gives a chain of embedded Zariski closed varieties parametrized by $a \in \mathbb{Z}^{\geq 0}$. Any decreasing chain of Zariski closed varieties stabilizes, hence for any sequence $a_1 \leq a_2 \leq ...$, only finitely many Z_{a_i} are distinct. The sets

$$\varphi^{-1}(t) = \varphi^{-1}([t,\infty[) \setminus \varphi^{-1}([t+1,\infty[)$$

are constructible for all t.

The main result of today's lecture:

THEOREM: (Semicontinuity of dimension)

Let $Z \subset \mathbb{C}P^n \times X$ be an algebraic subvariety, and $\pi : \mathbb{C}P^n \times X \longrightarrow X$ the projection. For any $x \in X$, define $Z_x := Z \cap \pi^{-1}(x)$. Then dim Z_x is an upper semicontinuous function of x.

Macaulay matrices

DEFINITION: Let $W \,\subset \, \mathbb{C}[z_0, ..., z_n]^d$ be a subspace in the space of homogeneous polynomials generated by $w_1, ..., w_r$, and M_W^s : $\mathbb{C}[z_0, ..., z_n]^{s-d} \otimes W \longrightarrow \mathbb{C}[z_0, ..., z_n]^s$ be the multiplication map. Then M_W^s is called **the Macaulay matrix**. The rows of this matrix are enumerated by the pairs (w_i, θ) , where θ is a monomial of degree n - d, and the columns by monomials ξ of degree n. If we write $w_i\theta = \sum \alpha_j^{i,\theta}\xi_j$, the entry of M_W^s corresponding to $((w_i, \theta), \xi)$ is given by $\alpha_j^{i,\theta}$.

CLAIM: Let $I^* \subset \mathbb{C}[z_0, ..., z_n]$ be a graded ideal generated by $W \subset \mathbb{C}[z_0, ..., z_n]^d$. **Then** dim $I^s = \operatorname{rk} M_W^s$.

Macaulay matrices and Hilbert function

CLAIM: Let X be an affine variety, and $w_1, ..., w_r : X \longrightarrow \mathbb{C}[z_0, ..., z_n]^d$ functions with values in the space $\mathbb{C}[z_0, ..., z_n]^d$ of homogeneous polynomials. Let I_* be the ideal generated by $w_1(x), ..., w_r(x), A_* := \mathbb{C}[z_0, ..., z_n]/I_*$ the quotient ring, and $h_x(s)$ its Hilbert function. Then $h_x(s)$ is upper semicontinuous as a function of $x \in X$, for all $s \in \mathbb{Z}^{>0}$.

Proof: Since dim $I^s = \operatorname{rk} M_W^s$, one has $h_x(s) = \dim \mathbb{C}[z_0, ..., z_n]^s - \operatorname{rk} M_W^s$. The number $\operatorname{rk} M_W^s$ is rank of maximal non-degenerate minor \mathfrak{M} in the matrix M_W^s . This minor is non-zero in a Zariski open subset $U_{\mathfrak{M}}$, hence the set $\{x \in X \mid \operatorname{rk} M_W^s \ge w\}$ is Zariski open for all $w \in \mathbb{Z}^{>0}$. Then the set $\{x \in X \mid h_x(s) \ge w\}$ is closed.

Semicontinuity of Hilbert polynomial

COROLLARY: Let X be an affine variety, and $w_1, ..., w_r : X \longrightarrow \mathbb{C}[z_0, ..., z_n]^d$ functions with values in the space $\mathbb{C}[z_0, ..., z_n]^d$ of homogeneous polynomials. Let I_* be the ideal generated by $w_1(x), ..., w_r(x), A_* := \mathbb{C}[z_0, ..., z_n]/I_*$ the quotient ring, $h_x(s)$ its Hilbert function, and $H_x(t)$ its Hilbert polynomial. Then **the degree of the Hilbert polynomial** $H_x(t)$ **is also upper semicontinuous as a function of** $x \in X$.

Proof. Step 1: Let $\{x_i\}$ be a sequence of points such that deg $H_{x_i}(t) \ge d$, and x its limit. We need to show that deg $H_x(t) \ge d$. Passing to a subsequence, we may assume that deg $H_{x_i}(t) = d$. **Passing to a subsequence again, we may also assume that for each** $t \in \mathbb{Z}^{>0}$, the sequence $h_{x_1}(t), h_{x_2}(t), ...$ stabilizes to $h(t) \in \mathbb{Z}$; indeed, $h_x(t)$ as a function of x takes only finitely many values, by semicontinuity. Then the sequences $h_{x_i}(1), h_{x_i}(2), ... h_{x_i}(t), ...$ and h(1), h(2), ...h(t), ... are equal outside of finitely many t's, and the corresponding Hilbert polynomials $H_{x_i}(t) = H(t)$ are equal.

Step 2: If the Hilbert polynomial $H_x(t)$ has smaller degree than H(t), one would have $H_x(t) < H(t)$ for almost all t, but this is impossible because $H_x(t) = h_x(t)$ and h(t) = H(t) for almost all t, and $h(t) \leq h_x(t)$ for all t by semicontinuity of $h_x(t)$.

Semicontinuity of dimension

THEOREM: (Semicontinuity of dimension)

Let $Z \subset \mathbb{C}P^n \times X$ be an algebraic subvariety, and $\pi : \mathbb{C}P^n \times X \longrightarrow X$ the projection. For any $x \in X$, define $Z_x := Z \cap \pi^{-1}(x)$. Then dim Z_x is an upper semicontinuous function of x.

Proof: Since the statement is local in X, we may assume that X is affine. Then Z is defined by a graded ideal $I^* \subset R := \mathcal{O}_X[z_0, ..., z_n]$. Let $w_1, ..., w_r$ be generators of the ideal I_* . Multiplying w_i by all appropriate monomials if necessary, we may assume that deg $w_i = d$. We can consider $w_1, ..., w_r$ as regular functions on X with values in the space $\mathbb{C}[z_0, ..., z_n]^d$ of homogeneous polynomials of degree d. Then Z_x is the set of common zeros of $w_1(x), ..., w_r(x) \in \mathbb{C}[z_0, ..., z_n]^d$. Therefore, the degree of the Hilbert polynomial of the ring $\frac{\mathbb{C}[z_0, ..., z_n]}{\langle w_1(x), ..., w_r(x) \rangle}$ is equal to dim Z_x . We reduced semicontinuity of dimension to the following proposition, which is already proven.

CLAIM: Let X be an affine variety, and $w_1, ..., w_r : X \longrightarrow \mathbb{C}[z_0, ..., z_n]^d$ functions with values in the space $\mathbb{C}[z_0, ..., z_n]^d$ of homogeneous polynomials. Let I_* be the ideal generated by $w_1(x), ..., w_r(x), A_* := \mathbb{C}[z_0, ..., z_n]/I_*$ the quotient ring, and $H_x(s)$ its Hilbert polynomial. Then deg $H_x(s)$ is upper semicontinuous as a function of x.