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Hilbert function and Policaré series

DEFINITION: Let A∗ =
⊕
i>0Ai be a graded ring of finite type (that is, with

each graded component finite-dimensional, and A0 = C), and M∗ a graded

A∗-module, that is, a module M∗ =
⊕
i>0Mi such that AdMe ⊂Md+e. Hilbert

function is defined as h(n) := dimMn, for all n ∈ Z>0. Poincaré series is

generating series for the Hilbert function, PM∗(t) :=
∑
i>0 h(i)ti.
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Policare series are rational

THEOREM: Let A∗ be a ring of finite type generated by A1, and M∗ a finitely
generated A∗-module. Then its Poincaré series is a rational function of
form P (t) = Q(t)

(1−t)k, where Q(t) is a polynomial.

Proof. Step 1: Let x ∈ A1, and Lx(m) := xm be the multiplication by x.
Consider the exact sequence

0−→Kn −→Mn
Lx−→ Mn+1 −→ Cn+1 −→ 0,

where K∗ is kernel of the map Lx and C∗ its cokernel. Then dim(Kn) −
dim(Mn)+dim(Mn+1)−dimCn+1 = 0, giving PM∗(t)(1−t) = PC∗(t)−tPK∗(t).

Step 2: We shall use induction on dimA1. When dimA1 = 0, A∗ = C,
and any finitely generated module M∗ is finite-dimensional. Then PM∗(t) is a
polynomial.

Step 3: Let B∗ := A∗/(x). Since Lx acts trivially on C∗ and on K∗, we can
consider C∗ and K∗ as B∗-modules. By induction assumption, the correspond-
ing Poincare series satisfy PC∗(t) = QC(t)

(1−t)k and PK∗(t) = QK(t)
(1−t)k. Then

PM∗(t) =
PC∗(t)− tPK∗(t)

1− t
is a rational function of the same nature.
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(1− t)−r =
∑∞
k=0

(
r+k−1
r−1

)
tk

REMARK: We assume
(
n
−1

)
= 0 for n > 0 and

(−1
−1

)
= 1.

LEMMA: (1− t)−r =
∑∞
k=0

(
r+k−1
r−1

)
tk (∗).

Proof. Step 1: Derivative of (1− t)−r is equal to r(1− t)−r−1. On the other

hand, derivative of the right hand side of (*) gives

d

dt

∞∑
k=0

(r + k − 1

r − 1

)
tk =

∞∑
k=0

k
(r + k − 1

r − 1

)
tk−1 l:=k−1

=====
∞∑
l=0

(l + 1)
(r + l

r − 1

)
tl =

=
∞∑
l=0

(l + 1)
(r + l)!

(r − 1)!(l + 1)!
tl =

∞∑
l=0

(r + l)!

(r − 1)!(l)!
tl = r

∞∑
l=0

(r + l

r

)
tl

Denoting the right hand side of (*) by Vr(t), we obtain that V ′r(t) = rVr+1(t).

Step 2: Assume that (*) is true: (1 − t)−r = Vr(t). Applying derivative to

both terms, we obtain r(1− t)−r−1 = rVr+1(t), which gives us (*) for r + 1.

Now (*) follows from induction in r.
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Hilbert polynomial

THEOREM: Let A∗ be a ring of finite type generated by A1, and M∗ a
finitely generated A∗-module. Then there exists a polynomial H(n) such
that the Hilbert function h(n) satisfies h(n) = H(n) for all n� 0.

Proof: Let P (t) :=
∑
i>0 h(i)ti be the Poincaré series of M∗. Then P (t) =

Q(t)
(1−t)k, where Q(t) =

∑n
i=0 ant

n is a polynomial, giving

P (t) =
n∑
i=0

ait
i
∞∑
k=0

(r + k − 1

r − 1

)
tk.

For each k, this gives

h(k) =
n∑
i=0

ai
(r + k − i− 1

r − 1

)
(∗∗)

When k > i, the binomial coefficients(r + k − i− 1

r − 1

)
=

(k − i+ 1)(k − i+ 2)(k − i+ 3)...(k − i+ r − 1)

(r − 1)!

are degree r − 1 polynomials in k, hence the sum (**) is also polynomial.

DEFINITION: In these assumtions, H(n) is called the Hilbert polynomial
of the module M∗.
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Hilbert polynomial of the ring of polynomials

CLAIM: Let A∗ be a graded ring, P (t) its Poincaré series, and H(n) be its

Hilbert polynomial. Write P (t) = Q(t)
(1−t)d, where Q(1) 6= 0. Then degH(n) =

d− 1.

Proof: H(n) is a sum of several terms proportional to (n − i + 1)(n − i +

2)(n− i+ 3)...(n− i+ d− 1), which is a polynomial of of degree d− 1.

COROLLARY: Let A∗ = C[z1, ..., zd] be the ring of polynomials. Then

its Poincaré series satisfies Pd(t) = (1 − t)−d. In particular, its Hilbert

polynomial has degree d.

Proof: Consider the exact sequence

0−→Kn −→An
Lzd−→ An+1 −→ Cn+1 −→ 0.

Clearly, K∗ = 0 and C∗ = C[z1, ..., zd]/(zd) = C[z1, ..., zd−1]. Then

PA∗(t)(1 − t) = PC∗(t) as shown above, which gives Pd(t) = Pd−1(1 − t)−1.

However, P1(t) = 1+t+t2+..., giving P1(t) = (1−t)−1. Then Pd(t) = (1−t)−d.
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Hilbert polynomial and dimension

THEOREM: Let A∗ be the graded ring of a projective variety X, and d the
degree of its Hilbert polynomial HA∗(n). Then d = dimX + 1.

Proof. Step 1: Let M∗ be a finitely generated graded A∗-module with
generators of degree s1, ..., sr. Then hM∗(n) 6

∑r
i=1 hA∗(n − si). Therefore,

degHM∗(n) 6 degHA∗(n).

Step 2: Let A∗ ⊂ B∗, with B∗ finitely generated as an A∗-module. Then
hB∗(n) > hA∗(n), hence degHA∗(n) = degHB∗(n). Therefore, for any finite
dominant C∗-invariant morphism C(X)−→ C(Y ) of the corresponding cone
varieties, the degrees of their Hilbert polynomials are equal.

Step 3: Let C+(X) := C(X)∪{0}. We consider C+(X) as an affine subvariety
of Cn. By Noether normalization lemma, for an appropriate linear projection
π : Cn −→ Cd, the morphism π : C+(X)−→ Cd is finite and dominant. Then
degHA∗(n) = degHOCd

(n) = d. However, C+(X) is also d-dimensional,

because it admits a finite, dominant map to Cd.

Step 4: We have shown that degHA∗(n) = dimC(X). However, dimC(X) =
dimX+ 1, because C(X) is fibered over X with 1-dimensional fiber C∗.
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Semicontinuity

DEFINITION: For any sequence {xi} of points in a topological space X,

a limit point of {xi} is any point in x ∈ X such that any neighboorhood

of x contains infinitely many elements of the sequence. For any sequence

{xi} ⊂ R limit superior lim supxi is supremum of all its limits, and limit

inferior lim inf xi is inferior of all its limits.

DEFINITION: Let X be a topological space, and ϕ : X −→ R a function.

The function ϕ is called upper semi-continuous if for any sequence {xi} ⊂ X
and any limit point x ∈ limxi, one has ϕ(x) > lim inf(ϕ(xi)), and lower semi-

continuous if ϕ(x) 6 lim sup(ϕ(xi)).

EXAMPLE: The raindrop function ξ : R−→ Q vanishes on irrational num-

bers, and satisfies ξ(p/q) = 1/q for any irreducible fraction p/q ∈ Q. Then ξ

is upper semicontinuous.
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Semicontinuity and preimages

CLAIM: Let ϕ : X −→ R be function. Then ϕ is upper semicontinuous if

and only if ϕ−1([a,∞[) is closed for all a.

Proof. Step 1: Suppose that ϕ is upper semicontinuous. Let {xi} be a

sequence of points in ϕ−1([a,∞[). Then ϕ(x) > a for any x ∈ limxi, hence

ϕ−1([a,∞[) is closed.

Step 2: Conversely, suppose that ϕ−1([a,∞[) is closed for all a. Then for any

{xi} ∈ ϕ−1([a− ε,∞[), any limit point x satisfies ϕ(x) > a− ε. Therefore, for

any sequence xi such that limϕ(xi) > a, any limit point x satisfies ϕ(x) > a.
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Semicontinuity in Zariski topology

DEFINITION: Let A be an algebraic variety. Constructible set is a subset
A1 ⊂ A obtained from Zariski closed sets by taking complements, finite unions
and finite intesections.

PROPOSITION: Let X be an algebraic variety with Zariski topology, and
ϕ : X −→ Z>0 an upper semicontinuous function. Then ϕ takes finitely
many values, and for each t, the set ϕ−1(t) is constructible.

Proof: As shown above, the set Za := ϕ−1([a,∞[) is Zariski closed. This gives
a chain of embedded Zariski closed varieties parametrized by a ∈ Z>0. Any
decreasing chain of Zariski closed varieties stabilizes, hence for any sequence
a1 6 a2 6 ..., only finitely many Zai are distinct. The sets

ϕ−1(t) = ϕ−1([t,∞[)\ϕ−1([t+ 1,∞[)

are constructible for all t.

The main result of today’s lecture:

THEOREM: (Semicontinuity of dimension)
Let Z ⊂ CPn × X be an algebraic subvariety, and π : CPn × X −→X the
projection. For any x ∈ X, define Zx := Z ∩ π−1(x). Then dimZx is an
upper semicontinuous function of x.
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Macaulay matrices

DEFINITION: Let W ⊂ C[z0, ..., zn]d be a subspace in the space of ho-

mogeneous polynomials generated by w1, ..., wr, and Ms
W : C[z0, ..., zn]s−d ⊗

W −→ C[z0, ..., zn]s be the multiplication map. Then Ms
W is called the Macaulay

matrix. The rows of this matrix are enumerated by the pairs (wi, θ), where

θ is a monomial of degree n− d, and the columns by monomials ξ of degree

n. If we write wiθ =
∑
α
i,θ
j ξj, the entry of Ms

W corresponding to ((wi, θ), ξ) is

given by α
i,θ
j .

CLAIM: Let I∗ ⊂ C[z0, ..., zn] be a graded ideal generated by W ⊂ C[z0, ..., zn]d.

Then dim Is = rkMs
W .
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Macaulay matrices and Hilbert function

CLAIM: Let X be an affine variety, and w1, ..., wr : X −→ C[z0, ..., zn]d func-

tions with values in the space C[z0, ..., zn]d of homogeneous polynomials. Let

I∗ be the ideal generated by w1(x), ..., wr(x), A∗ := C[z0, ..., zn]/I∗ the quotient

ring, and hx(s) its Hilbert function. Then hx(s) is upper semicontinuous

as a function of x ∈ X, for all s ∈ Z>0.

Proof: Since dim Is = rkMs
W , one has hx(s) = dimC[z0, ..., zn]s− rkMs

W . The

number rkMs
W is rank of maximal non-degenerate minor M in the matrix

Ms
W . This minor is non-zero in a Zariski open subset UM, hence the set

{x ∈ X | rkMs
W > w} is Zariski open for all w ∈ Z>0. Then the set

{x ∈ X | hx(s) > w} is closed.
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Semicontinuity of Hilbert polynomial

COROLLARY: Let X be an affine variety, and w1, ..., wr : X −→ C[z0, ..., zn]d

functions with values in the space C[z0, ..., zn]d of homogeneous polynomials.
Let I∗ be the ideal generated by w1(x), ..., wr(x), A∗ := C[z0, ..., zn]/I∗ the quo-
tient ring, hx(s) its Hilbert function, and Hx(t) its Hilbert polynomial. Then
the degree of the Hilbert polynomial Hx(t) is also upper semicontinuous
as a function of x ∈ X.

Proof. Step 1: Let {xi} be a sequence of points such that degHxi(t) > d, and
x its limit. We need to show that degHx(t) > d. Passing to a subsequence,
we may assume that degHxi(t) = d. Passing to a subsequence again, we
may also assume that for each t ∈ Z>0, the sequence hx1(t), hx2(t), ...
stabilizes to h(t) ∈ Z; indeed, hx(t) as a function of x takes only finitely
many values, by semicontinuity. Then the sequences hxi(1), hxi(2), ...hxi(t), ...
and h(1), h(2), ...h(t), ... are equal outside of finitely many t’s, and the corre-
sponding Hilbert polynomials Hxi(t) = H(t) are equal.

Step 2: If the Hilbert polynomial Hx(t) has smaller degree than H(t), one
would have Hx(t) < H(t) for almost all t, but this is impossible because
Hx(t) = hx(t) and h(t) = H(t) for almost all t, and h(t) 6 hx(t) for all t by
semicontinuity of hx(t).
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Semicontinuity of dimension

THEOREM: (Semicontinuity of dimension)
Let Z ⊂ CPn × X be an algebraic subvariety, and π : CPn × X −→X the
projection. For any x ∈ X, define Zx := Z ∩ π−1(x). Then dimZx is an
upper semicontinuous function of x.

Proof: Since the statement is local in X, we may assume that X is affine.
Then Z is defined by a graded ideal I∗ ⊂ R := OX[z0, ..., zn]. Let w1, ..., wr
be generators of the ideal I∗. Multiplying wi by all appropriate monomials
if necessary, we may assume that degwi = d. We can consider w1, ..., wr
as regular functions on X with values in the space C[z0, ..., zn]d of homo-
geneous polynomials of degree d. Then Zx is the set of common zeros of
w1(x), ..., wr(x) ∈ C[z0, ..., zn]d. Therefore, the degree of the Hilbert polyno-
mial of the ring C[z0,...,zn]

〈w1(x),...,wr(x)〉 is equal to dimZx. We reduced semicontinuity
of dimension to the following proposition, which is already proven.

CLAIM: Let X be an affine variety, and w1, ..., wr : X −→ C[z0, ..., zn]d func-
tions with values in the space C[z0, ..., zn]d of homogeneous polynomials. Let
I∗ be the ideal generated by w1(x), ..., wr(x), A∗ := C[z0, ..., zn]/I∗ the quotient
ring, and Hx(s) its Hilbert polynomial. Then degHx(s) is upper semicon-
tinuous as a function of x.
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