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lecture 25: Constructible sets

Misha Verbitsky

IMPA, sala 232

November 19, 2018

1



Algebraic geometry I, lecture 25 M. Verbitsky

Constructible sets

DEFINITION: Let A be an algebraic variety. Constructible set is a subset

A1 ⊂ A obtained from Zariski closed sets by taking complements, finite unions

and finite intesections.

PROPOSITION: Any constructible subset of X can be obtained as a

finite union of sets of form Z\Z1, where Z ⊃ Z1 are Zariski closed.

Proof: A complement of such set can be obtained as (X\Z)∩Z1. Intersection

of two such sets is (Z\Z1) ∩ (Z′\Z′1) = Z ∩ Z′\(Z1 ∪ Z′1).

CLAIM: A set Z ⊂ X is constructible if and only if for some affine cover

{Ui}, the intersections Z ∩ Ui are constructible.

Proof: Indeed, Z =
⋃
Z ∩ Ui.

The main result of today’s lecture

THEOREM: (Chevalley)

Let ϕ : X −→ Y be a morphism of algebraic varieties iver C, and Z ⊂ X is a

constructible set. Then ϕ(Z) is constructible.
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Reducing Chevalley theorem

THEOREM: (Chevalley)
Let ϕ : X −→ Y be a morphism of algebraic varieties iver C, and Z ⊂ X is a
constructible set. Then ϕ(Z) is constructible.

Proof. Step 1: Let {Ui} be an affine cover of X. Then ϕ(Z) =
⋃
ϕ(Z ∩ Ui).

Therefore, it suffices to prove Chevalley theorem assuming that X is
affine. Since the statement is local in Y , we can also assume that Y is affine.
Replacing X ⊂ Cn by Cn, we can always assume that X = Cn. Indeed, if Z is
constructible in X, it is also constructible in Cn.

Step 2: Replacing Y by the union of its irreducible components, we may
always assume that Y is irreducible.

Step 3: Let ΓZ ⊂ Cn × Y be the subset given by ΓZ := {(x, y) | x ∈
Z, y = ϕ(x)}. Since ΓZ is an intersection of the graph of ϕ and Z × Y , it is
constructible. Now, ϕ(Z) = π(ΓZ), where π : Cn × Y −→ Y is the projection.
Therefore, we can always assume that ϕ : Cn×Y −→ Y is the projection
π, an Z ⊂ Cn × Y .

Step 4: Representing π as a composition of the projections Ck×Y −→ Ck−1×
Y , we reduce the theorem to the case Z ⊂ C × Y and ϕ : C × Y −→ Y
being the projection.
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Chevalley theorem reduced further

We reduced Chevalley theorem to the following situation.
THEOREM: Let Y be an irreducible affine variety, π : C×Y −→ Y projection,
and Z ⊂ C× Y a constructible set. Then π(Z) is constructible.

Proof. Step 1: We use induction in dimY . First, suppose that π(Z) is
not Zariski dense in Y . Then π(Z) is contained in a proper Zariski closed
subvariety Y0 ⊂ Y . Replacing Y by Y0 and using the induction assumption,
we prove the statement of the theorem. Therefore, we may assume that
π(Z) is Zariski dense in Y .

Step 2: Suppose that π(Z) contains a nonempty Zariski open subset U ⊂ Y ,
with Y \U = Y0. Then π(Z) = U ∪ π(π−1(Y0) ∩ Z). The set π−1(Y0) ∩ Z is
constructible in C×Y0. Projecting it to Y0 and using the induction assumption
again, we obtain that π(π−1(Y0)∩Z) is constructible. Therefore, the same is
true for π(Z). It remains to prove that π(Z) contains a nonempty Zariski
open subset. We reduced Chevalley theorem to the following proposition.

PROPOSITION: Let Y be an irreducible affine variety, π : C × Y −→ Y
projection, and Z ⊂ C × Y a constructible set. Suppose that π(Z) is Zariski
dense in Y . Then π(Z) contains a nonempty Zariski open subset of Y .

Proof: Later today.
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Symmetric polynomials (reminder)

DEFINITION: Symmetric polynomial P (z1, ..., zn) ∈ C[z1, ..., zn] is a poly-

nomial which is invariant with respect to the symmetric group Σn acting on

C[z1, ..., zn] by permutations.

DEFINITION: Consider the polynomial P (z1, ..., zn, t) :=
∏n
i=1(t + zi) =∑

eit
i, with ei ∈ C[z1, ..., zn]. Then ei are called elementary symmetric poly-

nomials on z1, ..., zn.

THEOREM: Every symmetric polynomial on z1, ..., zn can be polynomi-

ally expressed through the elementary symmetric polynomials.

Proof: Left as an exercise.
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Resultants

DEFINITION: Let P (t), Q(t) be polynomials, αi roots of P (t), βj roots of

Q(t), and R(P,Q) :=
∏
i,j(αi − βj). Since R(P,Q) is invariant under permuta-

tions of αi and of βj, it can be expressed polynomially through the elementary

symmetric polynomials on αi and βj, that is, on coefficients of P (t), Q(t). The

quantity R(P,Q), expressed as polynomial on the coefficients of P (t) and Q(t)

is called the resultant of P (t), Q(t).

CLAIM: Let P,Q ∈ k[t] be polynomials over a field. Then R(P,Q) = 0 if and

only if P (t) and Q(t) have a common root over the algebraic closure k.

Proposition 1: Let Y be an irreducible affine variety, and P (t), Q(t) ∈ OY [t]

polynomials defining subvarieties A,B ⊂ C×Y . Assume that π(A∩B) is Zariski

dense in Y . Then R(P,Q) = 0, and P (t), Q(t) have a common multiplier over

k(Y )[t].

Proof: Let Y0 ⊂ Y be the subvariety defined by R(P,Q) = 0. Then π(A∩B) ⊂
Y0. Since π(A ∩B) is Zariski dense, R(P,Q) = 0.

6



Algebraic geometry I, lecture 25 M. Verbitsky

Resultants and subvarieties in Y × C

COROLLARY: Let Y be an irreducible affine variety, and P1(t), P2(t), ...Pr(t) ∈
OY [t] be polynomials defining subvarieties A1, A2, ...Ar ⊂ C× Y . Suppose that

π(A1∩A2∩...Ar) is Zariski dense in Y . Then Pi(t) have a common multiplier

over k(Y )[t].

Proof: By Proposition 1, P1(t) and P2(t) have a common multiplier Q̃(t)

over k(Y )[t]. Multiplying Q̃(t) by the product of appropriate denominators

s ∈ OY , we obtain Q(t) = sQ̃(t) ∈ OY [t]. Then sP1(t) and sP2(t) divides Q(t),

hence A1 ∩ A2 ⊂ V (s) ∪ V (Q), where V (·) denotes the zero set. Therefore,

the projection of the common zero set of Q,P3(t), ..., Pr(t) is Zariski dense in

Y . Using induction on r, we obtain that all Pi(t) have a common multiplier.

Corollary 1: Let Y be an irreducible affine variety, and R ⊂ C×Y a subvariety

such that the projection π(R) is Zariski dense in Y . Then there exists a

polynomial P (t) ∈ OY [t] vanishing in R such the zero set of P (t) is equal

to R outside of a proper Zariski closed subvariety π−1(Y0).
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Constructible subsets in Y × C

Proposition 2: Let Y be an irreducible affine variety, and R1 ⊂ R ⊂ C × Y
subvarieties. Suppose that R is the sero set of a polynomial P (t) ∈ OY [t].
Then there exists an open subset U ⊂ Y and polynomial Q(t) ∈ OU [t].
dividing P (t) in OU [t] such that the zero set of Q(t) is equal to R1∩C×U.

Proof. Step 1: By Corollary 1, there exists U ⊂ Y and polynomial Q(t) ∈
OU [t] such that its zero set is R1 ∩ C× U . Replacing Q(t) by a polynomial of
smaller degree, we can assume that Q(t) is reduced (has no multiple roots
over the algebraic closure). Then OU [t]/(Q) is embedded to k(U)[t]/(Q),
which is a direct sum of fields, hence the ideal (Q) is radical.

Step 2: Since R1 ⊂ R, one has Ann(R) ⊂ Ann(R1) = (Q). Therefore, P (t)
divides Q(t).

We shall also need the following lemma.
Lemma 1: Let Y be an irreducible affine variety, and Z ⊂ C × Y the zero
set of a polynomial P (t) ∈ OY [t]. Then the projection π(Z) contains a
nonempty Zariski open subset of Y .

Proof: Write P (t) = a0 + a1t+ ...+ antn, with ai ∈ OY , and let U ⊂ Y be the
complement to the zero set of an. Then the projection Z ∩ π−1(U)

π−→ U is
finite and dominant, hence surjective.
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Chevalley theorem: finishing the proof

We reduced Chevalley theorem to the following
PROPOSITION: Let Y be an irreducible affine variety, π : C × Y −→ Y

projection, and Z ⊂ C × Y a constructible set. Suppose that π(Z) is Zariski
dense in Y . Then π(Z) contains a nonempty Zariski open subset of Y .

Proof. Step 1: As shown above, Z is a union of several subsets of form
Z1\Z2, where Zi are Zariski closed. Then for at least one of these subsets
the image π(Z1\Z2) is Zariski dense. Replacing Z by this subset, we may
assume Z = Z1\Z2, where Z2 ⊂ Z1.

Step 2: Replacing Y by an open subset again, we may assume that Z1 and Z2
are zero set of polynomials P1(t) and P2(t) ∈ OU [t] (Corollary 1). Replacing
U by a smaller open subset again, we may assume that P1(t) divides P2(t)
(Proposition 2). Let Y1 ⊂ U be the subset defined by the resultant R(P1, P2).
Replacing U by U\Y1, we may assume that P1(t), P2(t) have no common
zeros in C × U . Then Z is a Zariski closed subset, defined by an ideal
Q(t) = P1(t)

P2(t).

Step 3: Now, Lemma 1 implies that π(Z) contains a nonempty Zariski open
subset.
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