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Constructible sets

DEFINITION: Let A be an algebraic variety. Constructible set is a subset
A1 C A obtained from Zariski closed sets by taking complements, finite unions
and finite intesections.

PROPOSITION: Any constructible subset of X can be obtained as a
finite union of sets of form Z\Z;, where Z D Z1 are Zariski closed.

Proof: A complement of such set can be obtained as (X\Z)NZ4. Intersection
of two such sets is (Z\Z1)N(Z'\Z}) =ZnNZ'\(Z1 U Z]). =

CLAIM: A set Z C X is constructible if and only if for some affine cover
{U;}, the intersections Z N U, are constructible.
Proof: Indeed, Z=JZNU;. =

The main result of today’'s lecture

THEOREM: (Chevalley)
Let o X — Y be a morphism of algebraic varieties iver C, and Z C X is a
constructible set. Then ¢(~Z) is constructible.
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Reducing Chevalley theorem

THEOREM: (Chevalley)
Let o1 X — Y be a morphism of algebraic varieties iver C, and Z C X is a
constructible set. Then ¢(~Z) is constructible.

Proof. Step 1: Let {U;} be an affine cover of X. Then ¢o(Z) =Ue(ZNU;).
Therefore, it suffices to prove Chevalley theorem assuming that X is
affine. Since the statement is local in Y, we can also assume that Y is affine.
Replacing X C C" by C", we can always assume that X = C". Indeed, if Z is
constructible in X, it is also constructible in C™.

Step 2: Replacing Y by the union of its irreducible components, we may
always assume that Y is irreducible.

Step 3: Let 'y, € C" x Y be the subset given by Iy = {(x,y) | = €
Z,y = p(x)}. Since Iy is an intersection of the graph of ¢ and Z x Y, it is
constructible. Now, o(Z) = n(l" ), where 7 : C" x Y — Y is the projection.
T herefore, we can always assume that ¢ : C"xY — Y is the projection
m,an Z CC"*xY.

Step 4: Representing m as a composition of the projections Ckx Y —s CF—1 x
Y, we reduce the theorem to the case Z CCxY and ¢ : CXxY —Y
being the projection.
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Chevalley theorem reduced further

We reduced Chevalley theorem to the following situation.
THEOREM: Let Y be an irreducible affine variety, m : CxY — Y projection,
and Z C C x Y a constructible set. Then n(Z) is constructible.

Proof. Step 1: We use induction in dimY. First, suppose that n(Z) is
not Zariski dense in Y. Then n(Z) is contained in a proper Zariski closed
subvariety Yo C Y. Replacing Y by Yy and using the induction assumption,
we prove the statement of the theorem. Therefore, we may assume that
w(Z) is Zariski dense in Y.

Step 2: Suppose that n(Z) contains a nonempty Zariski open subset U C Y,
with Y\U = Yy. Then n(Z) = UUn(x"1(Yo) N Z). The set 7~ 1(Yp) N Z is
constructible in CxYp. Projecting it to Yy and using the induction assumption
again, we obtain that n(7#~1(Yy) N 2) is constructible. Therefore, the same is
true for n(Z). It remains to prove that n(Z) contains a nonempty Zariski
open subset. We reduced Chevalley theorem to the following proposition.

PROPOSITION: Let Y be an irreducible affine variety, m : CxY —Y
projection, and Z C C x Y a constructible set. Suppose that n(Z) is Zariski
dense in Y. Then n(Z) contains a nonempty Zariski open subset of Y.

Proof: Later today.
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Symmetric polynomials (reminder)

DEFINITION: Symmetric polynomial P(zq,...,zn) € Cl[z1,...,2n] is @ poly-
nomial which is invariant with respect to the symmetric group 2, acting on
Clz1, ..., zn] by permutations.

DEFINITION: Consider the polynomial P(z1,...,2zn,t) = [[l'—1(t + 2;) =
S e;tt, with e; € C[z1, ..., zn]. Then e; are called elementary symmetric poly-

nomials on zq, ..., zn.

THEOREM: Every symmetric polynomial on z1,...,z, can be polynomi-
ally expressed through the elementary symmetric polynomials.

Proof:. Left as an exercise. =
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Resultants

DEFINITION: Let P(t),Q(t) be polynomials, «; roots of P(t), 3; roots of
Q(t), and R(P,Q) :=1I; j(a; — Bj). Since R(P,Q) is invariant under permuta-
tions of a; and of Bj, it can be expressed polynomially through the elementary
symmetric polynomials on «; and g;, that is, on coefficients of P(t),Q(t). The
quantity R(P,Q), expressed as polynomial on the coefficients of P(t) and Q(t)
is called the resultant of P(t), Q(¢%).

CLAIM: Let P,Q € k[t] be polynomials over a field. Then R(P,Q) = 0 if and
only if P(t) and Q(t) have a common root over the algebraic closure k.
u

Proposition 1: Let Y be an irreducible affine variety, and P(t),Q(t) € Oy [t]
polynomials defining subvarieties A, B C CxY. Assume that n(ANB) is Zariski
dense in Y. Then R(P,Q) = 0, and P(t),Q(t) have a common multiplier over
E(Y)[t].

Proof: Let Yy C Y be the subvariety defined by R(P,Q) = 0. Then n(ANB) C
Yy. Since n(AN B) is Zariski dense, R(P,Q) = 0. =
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Resultants and subvarieties in Y x C

COROLLARY: Let Y be anirreducible affine variety, and P1(t), P>(t),...P-(t) €
Oy [t] be polynomials defining subvarieties A7, A>,...A, C C x Y. Suppose that
m(A1NA>N...Ay) is Zariski dense in Y. Then P;(t) have a common multiplier
over k(Y)[t].

Proof: By Proposition 1, P;(t) and P»>(t) have a common multiplier Q(t)
over k(Y)[t]. Multiplying Q(t) by the product of appropriate denominators
s € Oy, we obtain Q(t) = sQ(t) € Oy [t]. Then sPi(t) and sP(t) divides Q(t),
hence A1 NA> C V(s) UV(Q), where V(-) denotes the zero set. Therefore,
the projection of the common zero set of Q, P3(t), ..., P-(t) is Zariski dense in
Y. Using induction on r, we obtain that all P;(t) have a common multiplier.
u

Corollary 1: Let Y be an irreducible affine variety, and R C Cx Y a subvariety
such that the projection n(R) is Zariski dense in Y. Then there exists a
polynomial P(t) € Oy[t] vanishing in R such the zero set of P(t) is equal
to R outside of a proper Zariski closed subvariety 7—1(Yp). =
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Constructible subsets in Y x C

Proposition 2: Let Y be an irreducible affine variety, and R{ C RCCxY
subvarieties. Suppose that R is the sero set of a polynomial P(t) € Oy[t].
Then there exists an open subset U C Y and polynomial Q(t) € Oglt].
dividing P(t) in Oy [t] such that the zero set of Q(¢) is equal to R{NCxU.

Proof. Step 1: By Corollary 1, there exists U C Y and polynomial Q(t) €
Orr[t] such that its zero set is R NC x U. Replacing Q(t) by a polynomial of
smaller degree, we can assume that Q(¢) is reduced (has no multiple roots
over the algebraic closure). Then Oy[t]/(Q) is embedded to k(U)[t]/(Q),
which is a direct sum of fields, hence the ideal (Q) is radical.

Step 2: Since Ry C R, one has Ann(R) C Ann(R1) = (Q). Therefore, P(t)
divides Q(t). m

We shall also need the following lemma.

Lemma 1: Let Y be an irreducible affine variety, and Z C C x Y the zero
set of a polynomial P(t) € Oy[t]. Then the projection n(Z) contains a
nonempty Zariski open subset of Y.

Proof: Write P(t) = ag+ a1t + ... + ant™, with a; € Oy, and let U C Y be the
complement to the zero set of an. Then the projection ZNn#—Y(U) = U is
finite and dominant, hence surjective. m
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Chevalley theorem: finishing the proof

We reduced Chevalley theorem to the following

PROPOSITION: Let Y be an irreducible affine variety, = : CxY —Y
projection, and Z C C x Y a constructible set. Suppose that n(Z) is Zariski
dense in Y. Then n(Z) contains a nonempty Zariski open subset of Y.

Proof. Step 1: As shown above, Z is a union of several subsets of form
Z1\Z>, where Z; are Zariski closed. Then for at least one of these subsets
the image n(Z1\Z5) is Zariski dense. Replacing Z by this subset, we may
assume 7 = Z1\Z», where Z, C Z;.

Step 2: Replacing Y by an open subset again, we may assume that Z; and Z»
are zero set of polynomials Pi(t) and P»(t) € Oy[t] (Corollary 1). Replacing
U by a smaller open subset again, we may assume that Py (¢) divides P>(t)
(Proposition 2). Let Y7 C U be the subset defined by the resultant R(Py, P»).
Replacing U by U\Y7, we may assume that P;(t), P>(t) have no common
zeros in Cx U. Then Z is a Zariski closed subset, defined by an ideal

Pq(t
QD) = 7(3):

Step 3: Now, Lemma 1 implies that n(Z) contains a nonempty Zariski open
subset. =
)



