Geometria Algébrica I

lecture 25: Constructible sets

Misha Verbitsky

IMPA, sala 232

November 19, 2018

Constructible sets

DEFINITION: Let A be an algebraic variety. Constructible set is a subset $A_1 \subset A$ obtained from Zariski closed sets by taking complements, finite unions and finite intesections.

PROPOSITION: Any constructible subset of X can be obtained as a finite union of sets of form $Z \setminus Z_1$, where $Z \supset Z_1$ are Zariski closed.

Proof: A complement of such set can be obtained as $(X \setminus Z) \cap Z_1$. Intersection of two such sets is $(Z \setminus Z_1) \cap (Z' \setminus Z'_1) = Z \cap Z' \setminus (Z_1 \cup Z'_1)$.

CLAIM: A set $Z \subset X$ is constructible if and only if for some affine cover $\{U_i\}$, the intersections $Z \cap U_i$ are constructible. **Proof:** Indeed, $Z = \bigcup Z \cap U_i$.

The main result of today's lecture

THEOREM: (Chevalley)

Let $\varphi : X \longrightarrow Y$ be a morphism of algebraic varieties iver \mathbb{C} , and $Z \subset X$ is a constructible set. Then $\varphi(Z)$ is constructible.

Reducing Chevalley theorem

THEOREM: (Chevalley)

Let $\varphi : X \longrightarrow Y$ be a morphism of algebraic varieties iver \mathbb{C} , and $Z \subset X$ is a constructible set. Then $\varphi(Z)$ is constructible.

Proof. Step 1: Let $\{U_i\}$ be an affine cover of X. Then $\varphi(Z) = \bigcup \varphi(Z \cap U_i)$. **Therefore, it suffices to prove Chevalley theorem assuming that** X is **affine.** Since the statement is local in Y, we can also assume that Y is affine. Replacing $X \subset \mathbb{C}^n$ by \mathbb{C}^n , we can always assume that $X = \mathbb{C}^n$. Indeed, if Z is constructible in X, it is also constructible in \mathbb{C}^n .

Step 2: Replacing Y by the union of its irreducible components, we may always assume that Y is irreducible.

Step 3: Let $\Gamma_Z \subset \mathbb{C}^n \times Y$ be the subset given by $\Gamma_Z := \{(x,y) \mid x \in Z, y = \varphi(x)\}$. Since Γ_Z is an intersection of the graph of φ and $Z \times Y$, it is constructible. Now, $\varphi(Z) = \pi(\Gamma_Z)$, where $\pi : \mathbb{C}^n \times Y \longrightarrow Y$ is the projection. **Therefore, we can always assume that** $\varphi : \mathbb{C}^n \times Y \longrightarrow Y$ **is the projection** π , an $Z \subset \mathbb{C}^n \times Y$.

Step 4: Representing π as a composition of the projections $\mathbb{C}^k \times Y \longrightarrow \mathbb{C}^{k-1} \times Y$, we reduce the theorem to the case $Z \subset \mathbb{C} \times Y$ and $\varphi : \mathbb{C} \times Y \longrightarrow Y$ being the projection.

Chevalley theorem reduced further

We reduced Chevalley theorem to the following situation. THEOREM: Let Y be an irreducible affine variety, $\pi : \mathbb{C} \times Y \longrightarrow Y$ projection, and $Z \subset \mathbb{C} \times Y$ a constructible set. Then $\pi(Z)$ is constructible.

Proof. Step 1: We use induction in dim Y. First, suppose that $\pi(Z)$ is not Zariski dense in Y. Then $\pi(Z)$ is contained in a proper Zariski closed subvariety $Y_0 \subset Y$. Replacing Y by Y_0 and using the induction assumption, we prove the statement of the theorem. Therefore, we may assume that $\pi(Z)$ is Zariski dense in Y.

Step 2: Suppose that $\pi(Z)$ contains a nonempty Zariski open subset $U \subset Y$, with $Y \setminus U = Y_0$. Then $\pi(Z) = U \cup \pi(\pi^{-1}(Y_0) \cap Z)$. The set $\pi^{-1}(Y_0) \cap Z$ is constructible in $\mathbb{C} \times Y_0$. Projecting it to Y_0 and using the induction assumption again, we obtain that $\pi(\pi^{-1}(Y_0) \cap Z)$ is constructible. Therefore, the same is true for $\pi(Z)$. It remains to prove that $\pi(Z)$ contains a nonempty Zariski open subset. We reduced Chevalley theorem to the following proposition.

PROPOSITION: Let Y be an irreducible affine variety, $\pi : \mathbb{C} \times Y \longrightarrow Y$ projection, and $Z \subset \mathbb{C} \times Y$ a constructible set. Suppose that $\pi(Z)$ is Zariski dense in Y. Then $\pi(Z)$ contains a nonempty Zariski open subset of Y.

Proof: Later today.

Symmetric polynomials (reminder)

DEFINITION: Symmetric polynomial $P(z_1, ..., z_n) \in \mathbb{C}[z_1, ..., z_n]$ is a polynomial which is invariant with respect to the symmetric group Σ_n acting on $\mathbb{C}[z_1, ..., z_n]$ by permutations.

DEFINITION: Consider the polynomial $P(z_1, ..., z_n, t) := \prod_{i=1}^n (t + z_i) = \sum e_i t^i$, with $e_i \in \mathbb{C}[z_1, ..., z_n]$. Then e_i are called **elementary symmetric polynomials** on $z_1, ..., z_n$.

THEOREM: Every symmetric polynomial on $z_1, ..., z_n$ can be polynomially expressed through the elementary symmetric polynomials.

Proof: Left as an exercise. ■

Resultants

DEFINITION: Let P(t), Q(t) be polynomials, α_i roots of P(t), β_j roots of Q(t), and $R(P,Q) := \prod_{i,j} (\alpha_i - \beta_j)$. Since R(P,Q) is invariant under permutations of α_i and of β_j , it can be expressed polynomially through the elementary symmetric polynomials on α_i and β_j , that is, on coefficients of P(t), Q(t). The quantity R(P,Q), expressed as polynomial on the coefficients of P(t) and Q(t) is called **the resultant** of P(t), Q(t).

CLAIM: Let $P, Q \in k[t]$ be polynomials over a field. Then R(P,Q) = 0 if and only if P(t) and Q(t) have a common root over the algebraic closure \overline{k} .

Proposition 1: Let *Y* be an irreducible affine variety, and $P(t), Q(t) \in \mathcal{O}_Y[t]$ polynomials defining subvarieties $A, B \subset \mathbb{C} \times Y$. Assume that $\pi(A \cap B)$ is Zariski dense in *Y*. Then R(P,Q) = 0, and P(t), Q(t) have a common multiplier over k(Y)[t].

Proof: Let $Y_0 \subset Y$ be the subvariety defined by R(P,Q) = 0. Then $\pi(A \cap B) \subset Y_0$. Since $\pi(A \cap B)$ is Zariski dense, R(P,Q) = 0.

Resultants and subvarieties in $Y \times \mathbb{C}$

COROLLARY: Let *Y* be an irreducible affine variety, and $P_1(t), P_2(t), ...P_r(t) \in O_Y[t]$ be polynomials defining subvarieties $A_1, A_2, ...A_r \subset \mathbb{C} \times Y$. Suppose that $\pi(A_1 \cap A_2 \cap ...A_r)$ is Zariski dense in *Y*. Then $P_i(t)$ have a common multiplier **over** k(Y)[t].

Proof: By Proposition 1, $P_1(t)$ and $P_2(t)$ have a common multiplier $\tilde{Q}(t)$ over k(Y)[t]. Multiplying $\tilde{Q}(t)$ by the product of appropriate denominators $s \in \Theta_Y$, we obtain $Q(t) = s\tilde{Q}(t) \in \Theta_Y[t]$. Then $sP_1(t)$ and $sP_2(t)$ divides Q(t), hence $A_1 \cap A_2 \subset V(s) \cup V(Q)$, where $V(\cdot)$ denotes the zero set. Therefore, the projection of the common zero set of $Q, P_3(t), ..., P_r(t)$ is Zariski dense in Y. Using induction on r, we obtain that all $P_i(t)$ have a common multiplier.

Corollary 1: Let *Y* be an irreducible affine variety, and $R \subset \mathbb{C} \times Y$ a subvariety such that the projection $\pi(R)$ is Zariski dense in *Y*. Then there exists a polynomial $P(t) \in \mathcal{O}_Y[t]$ vanishing in *R* such the zero set of P(t) is equal to *R* outside of a proper Zariski closed subvariety $\pi^{-1}(Y_0)$.

Constructible subsets in $Y \times \mathbb{C}$

Proposition 2: Let Y be an irreducible affine variety, and $R_1 \subset R \subset \mathbb{C} \times Y$ subvarieties. Suppose that R is the sero set of a polynomial $P(t) \in \mathcal{O}_Y[t]$. Then there exists an open subset $U \subset Y$ and polynomial $Q(t) \in \mathcal{O}_U[t]$. dividing P(t) in $\mathcal{O}_U[t]$ such that the zero set of Q(t) is equal to $R_1 \cap \mathbb{C} \times U$.

Proof. Step 1: By Corollary 1, there exists $U \subset Y$ and polynomial $Q(t) \in \mathcal{O}_U[t]$ such that its zero set is $R_1 \cap \mathbb{C} \times U$. Replacing Q(t) by a polynomial of smaller degree, we can assume that Q(t) is reduced (has no multiple roots over the algebraic closure). Then $\mathcal{O}_U[t]/(Q)$ is embedded to k(U)[t]/(Q), which is a direct sum of fields, hence the ideal (Q) is radical.

Step 2: Since $R_1 \subset R$, one has $Ann(R) \subset Ann(R_1) = (Q)$. Therefore, P(t) divides Q(t).

We shall also need the following lemma.

Lemma 1: Let Y be an irreducible affine variety, and $Z \subset \mathbb{C} \times Y$ the zero set of a polynomial $P(t) \in \mathcal{O}_Y[t]$. Then the projection $\pi(Z)$ contains a nonempty Zariski open subset of Y.

Proof: Write $P(t) = a_0 + a_1t + ... + a_nt^n$, with $a_i \in \mathcal{O}_Y$, and let $U \subset Y$ be the complement to the zero set of a_n . Then the projection $Z \cap \pi^{-1}(U) \xrightarrow{\pi} U$ is finite and dominant, hence surjective.

Chevalley theorem: finishing the proof

We reduced Chevalley theorem to the following **PROPOSITION:** Let Y be an irreducible affine variety, $\pi : \mathbb{C} \times Y \longrightarrow Y$ projection, and $Z \subset \mathbb{C} \times Y$ a constructible set. Suppose that $\pi(Z)$ is Zariski dense in Y. Then $\pi(Z)$ contains a nonempty Zariski open subset of Y.

Proof. Step 1: As shown above, Z is a union of several subsets of form $Z_1 \setminus Z_2$, where Z_i are Zariski closed. Then for at least one of these subsets the image $\pi(Z_1 \setminus Z_2)$ is Zariski dense. Replacing Z by this subset, we may assume $Z = Z_1 \setminus Z_2$, where $Z_2 \subset Z_1$.

Step 2: Replacing *Y* by an open subset again, we may assume that Z_1 and Z_2 are zero set of polynomials $P_1(t)$ and $P_2(t) \in \mathcal{O}_U[t]$ (Corollary 1). Replacing *U* by a smaller open subset again, we may assume that $P_1(t)$ divides $P_2(t)$ (Proposition 2). Let $Y_1 \subset U$ be the subset defined by the resultant $R(P_1, P_2)$. Replacing *U* by $U \setminus Y_1$, we may assume that $P_1(t), P_2(t)$ have no common zeros in $\mathbb{C} \times U$. Then *Z* is a Zariski closed subset, defined by an ideal $Q(t) = \frac{P_1(t)}{P_2(t)}$.

Step 3: Now, Lemma 1 implies that $\pi(Z)$ contains a nonempty Zariski open subset.