Home assignment 4: Tensor product

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary to follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

4.1 Tensor product of *R*-modules

Remark 4.1. All rings are assumed to be commutative and with unity.

Definition 4.1. Let *R* be a ring, and *M*, *M'* modules over *R*. We denote by $M \otimes_R M'$ an *R*-module generated by symbols $m \otimes m', m \in M, m' \in M'$, modulo relations $r(m \otimes m') = (rm) \otimes m' = m \otimes (rm'), (m+m_1) \otimes m' = m \otimes m' + m_1 \otimes m', m \otimes (m' + m'_1) = m \otimes m' + m \otimes m'_1$ for all $r \in R, m, m_1 \in M, m', m'_1 \in M'$. Such an *R*-module is called **the tensor product of** *M* **and** *M'* **over** *R*.

Definition 4.2. Let M_1, M_2, M be modules over a ring R. **Bilinear map** $\mu(M_1, M_2) \xrightarrow{\phi} M$ is a map satisfying $\phi(rm, m') = \phi(m, rm') = r\phi(m, m')$, $\phi(m + m_1, m') = \phi(m, m') + \phi(m_1, m')$, $\phi(m, m' + m'_1) = \phi(m, m') + \phi(m, m'_1)$.

Exercise 4.1. (universal property of tensor product)

Construct a natural bijective correspondence between the set of homomorphisms $\operatorname{Hom}_R(M_1 \otimes_R M_2, M)$ and the set of bilinear maps $\operatorname{Bil}(M_1 \times M_2, M)$.

Exercise 4.2. Find non-zero *R*-modules *A*, *B*, such that $A \otimes_R B = 0$ for

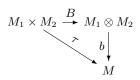
- a. $R = \mathbb{C}[t]$.
- b. R is the ring of complex analytic functions on \mathbb{C} .
- c. $R = \mathbb{Z}$.
- d. $R = \mathbb{Z}/10.$

Definition 4.3. Let M, M' be R-modules. Consider the group $\operatorname{Hom}_R(M, M')$ of R-module homomorphisms. We consider $\operatorname{Hom}_R(M, M')$ as an R-module, using $r\phi(m) := \phi(rm)$. This R-module is called **internal** Hom **functor**, denoted \mathcal{Hom}_R .

Exercise 4.3. Prove that $\mathcal{H}om_R(M_1 \otimes_R M_2, M) = \mathcal{H}om_R(M_1, \mathcal{H}om_R(M_2, M)).$

Exercise 4.4. Let $B: M_1 \times M_2 \longrightarrow M$ be a bilinear map of *R*-modules.

a. Prove that there exists a unique homomorphism $b : M_1 \otimes M_2 \longrightarrow M$, making the following diagram commutative:



Issued 17.01.2022

– 1 –

Handouts VERSION 1.0, 17.01.2022

b. Prove that this property defines $M_1 \otimes M_2$ uniquely.

4.2 Exact sequences and *Hom*-functor

Definition 4.4. Exact sequence of *R*-modules is a sequence of homomorphisms

 $\ldots \longrightarrow M_i \longrightarrow M_{i+1} \longrightarrow M_{i+2} \longrightarrow \ldots$

(finite or infinite) such that the kernel of *n*-th arrow is the image of n - 1th arrow for all *n*. Short exact sequence is an exact sequence of form $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$.

Exercise 4.5. Let $M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Prove that the sequence

$$0 \longrightarrow \mathcal{H}om_R(M_3, N) \longrightarrow \mathcal{H}om_R(M_2, N) \longrightarrow \mathcal{H}om_R(M_1, N)$$

is exact, for any R-module N.

Exercise 4.6. Let $R = \mathbb{Z}$. Find an example of an injective homomorphism $M_1 \longrightarrow M_2$ such that $\mathcal{H}om_R(M_2, N) \longrightarrow \mathcal{H}om_R(M_1, N)$ is not surjective for some *R*-module *N*.

Definition 4.5. An exact functor F is a functor on the category of R-modules mapping any exact sequence of R-modules to an exact sequence.

Exercise 4.7 (*). Let F be a functor which maps any short exact sequence to an exact sequence. Prove that F is exact.

Definition 4.6. An *R*-module is called **injective** if the functor

$$M \longrightarrow \mathcal{H}om_R(M, N)$$

is exact.

Exercise 4.8. Find a non-zero injective module over \mathbb{Z} .

Exercise 4.9 (*). Find a non-zero injective module over \mathbb{Z} containing $\mathbb{Z}/n\mathbb{Z}$.

Exercise 4.10. Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3$ be an exact sequence of *R*-modules. Prove that the corresponding sequence

 $0 \longrightarrow \mathcal{H}om_R(N, M_1) \longrightarrow \mathcal{H}om_R(N, M_2) \longrightarrow \mathcal{H}om_R(N, M_3)$

is exact for any R-module N.

Issued 17.01.2022

– 2 –

Handouts VERSION 1.0, 17.01.2022

Exercise 4.11. Let $R = \mathbb{Z}$. Find an epimorphism (surjective homomorphism) of R-modules $M_2 \longrightarrow M_3$ such that the corresponding map

$$\mathcal{H}om_R(N, M_2) \longrightarrow \mathcal{H}om_R(N, M_3)$$

is not surjective for some R-module N.

Definition 4.7. An *R*-module *M* is called **projective** if the functor $M \longrightarrow \mathcal{H}om_R(N, M)$ is exact.

Exercise 4.12 (!). Prove that a finitely generated R-module N is projective if and only if it is a direct summand of a free module R^n , that is, there is a direct sum decomposition of R-modules $R^n = N \oplus N'$.

Hint. Consider the surjective homomorphism

 $\mathcal{H}om_R(N, M_2) \longrightarrow \mathcal{H}om_R(N, M_3)$

where $M_3 = N$, and M_2 is a free module equipped with a surjective homomorphism to N.

Exercise 4.13 (*). Suppose that R is a finitely generated ring over \mathbb{C} , and any finitely generated R-module is projective. Prove that R is a direct sum of fields, or find a counterexample.

4.3 Tensor product and exact sequences

Exercise 4.14. Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Prove that for any *R*-modules N, N', the sequence

$$0 \longrightarrow \mathcal{H}om_{R}(N', \mathcal{H}om_{R}(M_{3}, N)) \longrightarrow$$
$$\longrightarrow \mathcal{H}om_{R}(N', \mathcal{H}om_{R}(M_{2}, N)) \longrightarrow \mathcal{H}om_{R}(N', \mathcal{H}om_{R}(M_{1}N))$$

is exact

Exercise 4.15. Let $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Prove that for any *R*-modules N, N', the sequence

$$0 \longrightarrow \mathcal{H}om_R(M_3 \otimes N', N) \longrightarrow \mathcal{H}om_R(M_2 \otimes N', N) \longrightarrow \mathcal{H}om_R(M_1 \otimes N', N)$$

is exact.

Definition 4.8. A complex of *R*-modules is a sequence $M_1 \xrightarrow{d_1} M_2 \xrightarrow{d_2} M_3 \xrightarrow{d_3} \dots$ such that $d_i \circ d_{i+1} = 0$. **Cohomology** of this complex are the quotient groups, $H^i(M_*) := \frac{\ker(d_i)}{\operatorname{im} d_{i-1}}$. A complex is **exact** if it has zero cohomology.

Issued 17.01.2022

Exercise 4.16. Consider a complex $M_1 \xrightarrow{\mu} M_2 \xrightarrow{\rho} M_3 \longrightarrow 0$ of *R*-modules such that the corresponding sequence

$$0 \longrightarrow \mathcal{H}om_R(M_3, N) \xrightarrow{\rho_N} \mathcal{H}om_R(M_2, N) \xrightarrow{\mu_N} \mathcal{H}om_R(M_1, N)$$
(4.1)

is exact for any R-module N. Prove that E is also exact

Hint. Use injectivity of ρ_N to prove surjectivity of ρ by setting $N := M_3 / \operatorname{im} \rho$. To prove exactness of E in the second term, use $N = M_2 / \operatorname{im} \mu$ and apply exactness of the sequence (4.1) in the second term.

Exercise 4.17 (*). Let $E = \left(\dots \longrightarrow M_1 \xrightarrow{d_1} M_2 \xrightarrow{d_2} M_3 \longrightarrow \dots \right)$ be a complex of *R*-modules such that

 $\ldots \longrightarrow \mathcal{H}om_R(M_3, N) \longrightarrow \mathcal{H}om_R(M_2, N) \longrightarrow \mathcal{H}om_R(M_1, N) \longrightarrow \ldots$

is exact for all R-modules N. Prove that E is also exact.

Exercise 4.18 (!). Let $M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ be an exact sequence of *R*-modules. Prove that the sequence

$$M_1 \otimes_R M \longrightarrow M_2 \otimes_R M \longrightarrow M_3 \otimes_R M \longrightarrow 0$$

is also exact.

Hint. Use Exercise 4.16, and apply exactness of

$$0 \longrightarrow \mathcal{H}om_R(M_3 \otimes M, N) \longrightarrow \mathcal{H}om_R(M_2 \otimes M, N) \longrightarrow \mathcal{H}om_R(M_1 \otimes M, N),$$

using an isomorphism $\mathcal{H}om_R(M_1 \otimes_R M_2, M) = \mathcal{H}om_R(M_1, \mathcal{H}om_R(M_2, M))$ (Exercise 4.3).

Exercise 4.19 (!). Let $R = \mathbb{C}[t]$. Find an exact sequence of *R*-modules $0 \longrightarrow M_1 \longrightarrow M_2 \longrightarrow M_3 \longrightarrow 0$ and an *R*-module *N* such that the corresponding map $M_1 \otimes_R M \longrightarrow M_2 \otimes_R M$ is not injective.

Exercise 4.20 (!). Let $I \subset R$ be an ideal. Prove that for any *R*-module *M*, one has $M \otimes_R (R/I) \cong M/IM$.

Hint. Take an exact sequence $0 \longrightarrow I \longrightarrow R \longrightarrow R/I \longrightarrow 0$ and apply the functor $\otimes M$.

Exercise 4.21 (!). Let I, I' be distinct maximal ideals in a ring R. Prove that $R/I \otimes_R R/I' = 0$.

Exercise 4.22 (!). Let $\mathbb{R}^n \longrightarrow \mathbb{R}^m$ be a surjective homomorphism of \mathbb{R} -modules. Prove that $n \ge m$.

Issued 17.01.2022