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REMINDER: Affine varieties and finitely generated rings

DEFINITION: Category of affine varieties over C: its objects are algebraic
subsets in C", morphisms — polynomial maps.

DEFINITION: Finitely generated ring over C is a quotient of Cl[¢1, ..., tn]
by an ideal.

DEFINITION: Let R be a ring. An element x € R is called nilpotent if
™ = 0 for some n € Z>0.

Theorem 1: Let Ci be a category of finitely generated rings over C without
non-zero nilpotents and Aff — category of affine varieties. Consider the functor
® : Aff — CZ mapping an algebraic variety X to the ring of polynomial
functions on X. Then & is an equivalence of categories.

Proof: Later in this lecture.
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Strong Nullstellensatz

DEFINITION: Let I C C[ty,...,tn] be an ideal. Denote the set of common
zeros for I by V(I), with

V() ={(z1,...,2n) €C" | f(z1,...,2n) =0Vf € I}.

For Z C C"™ an algebraic subset, denote by Ann(A) the set of all polynomials
P(tq,...,tp) vanishing in Z.

THEOREM: (strong Nullstellensatz). For any ideal I C Cl[tq,...,tn] such
that C[tq, ..., tn]/I has no nilpotents, one has Ann(V (I)) = I.

Proof:. Later in this lecture.
REMARK: “Weak Nullstellensatz” claims that V(I) is never empty for any

ideal I; “Strong Nullstellensatz” claims that I is uniquely determined by V(1)
when R/I has no nilpotents.
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Strong Nullstellensatz and equivalence of categories

David Hilbert (Anna Gorban, 2018)
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Strong Nullstellensatz and equivalence of categories

THEOREM: (strong Nullstellensatz). For any ideal I C Cl[tq,...,tn] such
that C[t1, ..., tn]/I has no nilpotents, one has Ann(V(I)) = I.

Now we deduce Theorem 1 from Strong Nullstellensatz. This would
require us to construct a functor W : C%’ — Aff. Since any object R € O6(Cg)
is given as R = Cl[t1,...,tn]/I, we define W as W(R) := V(I); the functor
®: Aff — C was defined as Z — Ann(Z).

Strong Nullstellensatz gives Ann(V(I)) = I, hence ®(W(R)) = R for any
finitely generated ring. It remains to prove V(Ann(Z)) = Z.

Clearly, V(Ann(Z)) D Z: any point z € Z belongs to the set of common zeros
of Ann(Z). On the other hand, Z is a set of common zeros of a system & of
polynomial equations, giving Z =V (®) D V(Ann(Z2)).
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Localization

DEFINITION: Localization R(F)) of a ring R with respect to FF € R is a
ring R[F—l], which is formally generated by the elements of form a/F™ and

relations a/F™-b/F™ = ab/F"t™ q/F" 4+ b/F™ = aF;]';S,LFn and aFF/FkTn =
a/F™.

REMARK: Clearly, R(F) = R[t]/(tF — 1).

EXAMPLE: Z[271], the ring of rational numbers with denominators 2*.
EXAMPLE: C[t,t—1], the ring of Laurent polynomials.

EXERCISE: Let R be a finitely generated ring over a field k. Prove that
R[F~1] is a finitely generated ring over k.

DEFINITION: a € R is called nilpotent if a™ = 0 for some n > 0.
CLAIM 1: Suppose that R[F~1] =0, where F € R. Then F is nilpotent.

Proof. Step 1: R(F) = R[t]/(tF —1). Therefore, 1 = 0 implies 1 =
(Ft—1)P, for some P ¢ RJ[t].

Step 2: Let P(t) = Y a;t', where a; € R. Then 1 = (Ft — 1)P implies
a; =a;_1F for all : > 0, and ag = 1.

Step 3: This gives P =Y Fi, and F*"t1 =0. =
6
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Spectrum and localization
DEFINITION: Spectrum of a ring R is the set Spec R if its prime ideals.

EXERCISE: Let R -2+ Ry be a ring homomorphism. Prove that ¢ 1(p)
IS a prime ideal, for any p € Spec R;.

PROPOSITION: In other words, any morphism R — R gives an injective
map of spectra Spec R[f~1] — SpecR.

Proof: Suppose that Proqr € Spec R(f), and p = q are their images in Spec R.
Then for each p € py, we have f¥p € q C qy; since q is prime, this implies that

peq. n

DEFINITION: Nilradical of a ring R is the set Nil(R) of all nilpotent ele-
ments of R.

THEOREM: Interesection P of all prime ideals of R is equal to Nil(R).

Proof: Clearly, P D Nil(R). Assume that, conversely, x ¢ Nil(R). Then
R[z~1] # 0, hence R[z~!] contains a prime ideal (the maximal one), and

its image in Spec R does not contaim . m
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Rabinowitz trick

DEFINITION: Let I C CJ[tq,...,tn] be an ideal. Recall that the set of com-
mon zeros of I is denoted by V(I) (‘“vanishing set”, ‘“null-set”, ‘“zero
set” ), and the set of all polynomials vanishing in Z C C" is denoted Ann(Z%)
( “annihilator” ).

Theorem 1: Let I C Cl[ty,...,tn] be an ideal, and f a polynomial function,
vanishing on V(I). Then f~ €I for some N € 7Z>9,

Proof. Step 1: Consider an ideal I; C Clty,...,t,41] 9generated by I C
Clt1,...,tn] and ft,41—1. Since the submodule of R generated by (ft,4;—
1,7) has no common zeros, [; contains 1 by (weak) Nullstellensatz.

Step 2: Let R:=C|t1,...,tn]/I. Consider the surjective map

¢: Clty, ...y tp41] — R[f~1] taking t1,...,tn to their images in R and mapping
t,a1 to f~1. Since ¢(J1) =0, and 1 € I1, one has 1 = 0 in R[f~1], giving
R[f~1]=0. By Claim 1, f is nilpotent in R. =

COROLLARY: (Strong Nullstellensatz)
Suppose that R := Cltq,...,tn]/I is a ring without nilpotents. Then [ =
Ann(V7)).

Proof: If a € Ann(V7)), then a™ € I by Theorem 1. =
3
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Zum Hilbertschen Nullstellensatz

The first time Hilbert Nullstellensatz was called by this name.

Zum Hilbertschen Nullstellensatz.

Yon
J. 1. Rabinowitsch in Moskan,

Satz. Verschwindet das Polynom f(z,, x,, ..., z,) tn allen Nullstellen
— im algebraisch abgeschlossenen Korper — eines Polynomideals a, ao
gibt es eine Potenz {* von f, die zu a gehort.

Beweis. Es sei a={(f,, fy,...,£,), wo f, die Variablen z,, ..., z, ent-
halten. z, sei eine Hilfsvariable. Wir bilden das Ideal @ < (£, fy, ..., 2 f—1).
Da der Voraussetzung nach f= 0 ist, sobald alle f; verschwinden, so hat
das Ideal d keine Nullstellen.

Folglich muB @& mit dem Einheitsideal zusammenfallen, (Vel. etwa
bei K. Hentzelt, , Eigentliche Eliminationstheorie, § 6, Math. Annalen 881).)

=
Ist also 1 =£_EF5{¢{,, Tyy ooy X, ) F; + Fy- (2, f — 1) und setzen wir in dieser
=1

Identitat @, =, so ergibt sich:

i=r l__|r_l
_yarl A1
l—élpilkf::ﬁl,n.-,;tlﬂ}lll;___.f_g_ \

Folglich ist §%= 0{a), w.z. b.w,

Yy Folgt auch schon aus der Kroneckerschen Eliminationstheorie.

{Eingegangen &m E. 5. 1929,)

J.L. Rabinowitsch, Zum Hilbertschen Nullstellensatz,
Mathematische Annalen (1930), 102, p. 520-520

9



Commutative algebra, lecture 3 M. Verbitsky

George Rainich

George Yuri Rainich (Rabinovich), 1886-1968.

5
Photograph by Paul R. Halmosh, 1964, Ann Arbor.
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Hilbert Nullstellensatz as equivalence of categories

Theorem 1: Let Crp be a category of finitely generated rings over C without
non-zero nilpotents and Aff — category of affine varieties. Consider the functor
b A —>G%p mapping an algebraic variety X to the ring of polynomial
functions on X. Then & is an equivalence of categories.

Proof: Let R = Clt1,...,tn]/I. The functor W : C3 — Aff takes R to V;
(the common zeros set of I). Then W o ® takes R to the ring of polynomial
functions on V;, which is equal to CA[?E{('%]- Since Ann(V;) = I, this functor
takes R to itself.

For another direction, ® oW takes an algebraic set A to the common zeros of
the ideal Ann(A), which is the same as A, because A = Vapp(4), by definition
of an algebraic set. =
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