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REMINDER: Affine varieties and finitely generated rings

DEFINITION: Category of affine varieties over C: its objects are algebraic

subsets in Cn, morphisms – polynomial maps.

DEFINITION: Finitely generated ring over C is a quotient of C[t1, ..., tn]

by an ideal.

DEFINITION: Let R be a ring. An element x ∈ R is called nilpotent if

xn = 0 for some n ∈ Z>0.

Theorem 1: Let CR be a category of finitely generated rings over C without

non-zero nilpotents and Aff – category of affine varieties. Consider the functor

Φ : Aff −→ C
op
R mapping an algebraic variety X to the ring of polynomial

functions on X. Then Φ is an equivalence of categories.

Proof: Later in this lecture.
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Strong Nullstellensatz

DEFINITION: Let I ⊂ C[t1, ..., tn] be an ideal. Denote the set of common

zeros for I by V (I), with

V (I) = {(z1, ..., zn) ∈ Cn | f(z1, ..., zn) = 0∀f ∈ I}.

For Z ⊂ Cn an algebraic subset, denote by Ann(A) the set of all polynomials

P (t1, ..., tn) vanishing in Z.

THEOREM: (strong Nullstellensatz). For any ideal I ⊂ C[t1, ..., tn] such

that C[t1, ..., tn]/I has no nilpotents, one has Ann(V (I)) = I.

Proof: Later in this lecture.

REMARK: “Weak Nullstellensatz” claims that V (I) is never empty for any

ideal I; “Strong Nullstellensatz” claims that I is uniquely determined by V (I)

when R/I has no nilpotents.
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Strong Nullstellensatz and equivalence of categories

David Hilbert (Anna Gorban, 2018)
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Strong Nullstellensatz and equivalence of categories

THEOREM: (strong Nullstellensatz). For any ideal I ⊂ C[t1, ..., tn] such

that C[t1, ..., tn]/I has no nilpotents, one has Ann(V (I)) = I.

Now we deduce Theorem 1 from Strong Nullstellensatz. This would

require us to construct a functor Ψ : C
op
R −→ Aff. Since any object R ∈ Ob(CR)

is given as R = C[t1, ..., tn]/I, we define Ψ as Ψ(R) := V (I); the functor

Φ : Aff −→ C
op
R was defined as Z −→ Ann(Z).

Strong Nullstellensatz gives Ann(V (I)) = I, hence Φ(Ψ(R)) = R for any

finitely generated ring. It remains to prove V (Ann(Z)) = Z.

Clearly, V (Ann(Z)) ⊃ Z: any point z ∈ Z belongs to the set of common zeros

of Ann(Z). On the other hand, Z is a set of common zeros of a system P of

polynomial equations, giving Z = V (P) ⊃ V (Ann(Z)).
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Localization

DEFINITION: Localization R(F )) of a ring R with respect to F ∈ R is a
ring R[F−1], which is formally generated by the elements of form a/Fn and
relations a/Fn · b/Fm = ab/Fn+m, a/Fn + b/Fm = aFm+bFn

Fn+m , and aF k/F k+n =
a/Fn.

REMARK: Clearly, R(F ) = R[t]/(tF − 1).
EXAMPLE: Z[2−1], the ring of rational numbers with denominators 2k.
EXAMPLE: C[t, t−1], the ring of Laurent polynomials.
EXERCISE: Let R be a finitely generated ring over a field k. Prove that
R[F−1] is a finitely generated ring over k.

DEFINITION: a ∈ R is called nilpotent if an = 0 for some n > 0.

CLAIM 1: Suppose that R[F−1] = 0, where F ∈ R. Then F is nilpotent.

Proof. Step 1: R(F ) = R[t]/(tF − 1). Therefore, 1 = 0 implies 1 =
(Ft− 1)P , for some P ∈ R[t].

Step 2: Let P (t) =
∑
ait

i, where ai ∈ R. Then 1 = (Ft − 1)P implies
ai = ai−1F for all i > 0, and a0 = 1.

Step 3: This gives P =
∑
F iti, and Fn+1 = 0.

6



Commutative algebra, lecture 3 M. Verbitsky

Spectrum and localization

DEFINITION: Spectrum of a ring R is the set SpecR if its prime ideals.

EXERCISE: Let R
ϕ−→ R1 be a ring homomorphism. Prove that ϕ−1(p)

is a prime ideal, for any p ∈ SpecR1.

PROPOSITION: In other words, any morphism R−→R1 gives an injective
map of spectra SpecR[f−1] ↪→ SpecR.

Proof: Suppose that pf , qf ∈ SpecR(f), and p = q are their images in SpecR.
Then for each p ∈ pf , we have fNp ∈ q ⊂ qf ; since q is prime, this implies that
p ∈ q.

DEFINITION: Nilradical of a ring R is the set Nil(R) of all nilpotent ele-
ments of R.

THEOREM: Interesection P of all prime ideals of R is equal to Nil(R).

Proof: Clearly, P ⊃ Nil(R). Assume that, conversely, x /∈ Nil(R). Then
R[x−1] 6= 0, hence R[x−1] contains a prime ideal (the maximal one), and
its image in SpecR does not contaim x.
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Rabinowitz trick

DEFINITION: Let I ⊂ C[t1, ..., tn] be an ideal. Recall that the set of com-
mon zeros of I is denoted by V (I) (“vanishing set”, “null-set”, “zero
set”), and the set of all polynomials vanishing in Z ⊂ Cn is denoted Ann(Z)
(“annihilator”).

Theorem 1: Let I ⊂ C[t1, ..., tn] be an ideal, and f a polynomial function,
vanishing on V (I). Then fN ∈ I for some N ∈ Z>0.

Proof. Step 1: Consider an ideal I1 ⊂ C[t1, ..., tn+1] generated by I ⊂
C[t1, ..., tn] and ftn+1−1. Since the submodule of R generated by 〈ftn+1−
1, I〉 has no common zeros, I1 contains 1 by (weak) Nullstellensatz.

Step 2: Let R := C[t1, ..., tn]/I. Consider the surjective map
ζ : C[t1, ..., tn+1]−→R[f−1] taking t1, ..., tn to their images in R and mapping
tn+1 to f−1. Since ζ(I1) = 0, and 1 ∈ I1, one has 1 = 0 in R[f−1], giving
R[f−1] = 0. By Claim 1, f is nilpotent in R.

COROLLARY: (Strong Nullstellensatz)
Suppose that R := C[t1, ..., tn]/I is a ring without nilpotents. Then I =
Ann(VI)).

Proof: If a ∈ Ann(VI)), then an ∈ I by Theorem 1.
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Zum Hilbertschen Nullstellensatz

The first time Hilbert Nullstellensatz was called by this name.

J.L. Rabinowitsch, Zum Hilbertschen Nullstellensatz,

Mathematische Annalen (1930), 102, p. 520-520
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George Rainich

George Yuri Rainich (Rabinovich), 1886-1968.

Photograph by Paul R. Halmosh, 1964, Ann Arbor.
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Hilbert Nullstellensatz as equivalence of categories

Theorem 1: Let CR be a category of finitely generated rings over C without

non-zero nilpotents and Aff – category of affine varieties. Consider the functor

Φ : Aff −→ C
op
R mapping an algebraic variety X to the ring of polynomial

functions on X. Then Φ is an equivalence of categories.

Proof: Let R = C[t1, ..., tn]/I. The functor Ψ : C
op
R −→ Aff takes R to VI

(the common zeros set of I). Then Ψ ◦Φ takes R to the ring of polynomial

functions on VI, which is equal to C[t1,...,tn]
Ann(VI)

. Since Ann(VI) = I, this functor

takes R to itself.

For another direction, Φ◦Ψ takes an algebraic set A to the common zeros of

the ideal Ann(A), which is the same as A, because A = VAnn(A), by definition

of an algebraic set.
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