Commutative algebra

lecture 3: Strong Nullstellensatz

Misha Verbitsky

IMPA, sala 2

January 7, 2022

REMINDER: Affine varieties and finitely generated rings

DEFINITION: Category of affine varieties over \mathbb{C} : its objects are algebraic subsets in \mathbb{C}^n , morphisms – polynomial maps.

DEFINITION: Finitely generated ring over \mathbb{C} is a quotient of $\mathbb{C}[t_1, ..., t_n]$ by an ideal.

DEFINITION: Let *R* be a ring. An element $x \in R$ is called **nilpotent** if $x^n = 0$ for some $n \in \mathbb{Z}^{>0}$.

Theorem 1: Let \mathcal{C}_R be a category of finitely generated rings over \mathbb{C} without non-zero nilpotents and \mathcal{A}_{ff} – category of affine varieties. Consider the functor $\Phi : \mathcal{A}_{ff} \longrightarrow \mathcal{C}_R^{op}$ mapping an algebraic variety X to the ring of polynomial functions on X. Then Φ is an equivalence of categories.

Proof: Later in this lecture.

Strong Nullstellensatz

DEFINITION: Let $I \subset \mathbb{C}[t_1, ..., t_n]$ be an ideal. Denote the set of common zeros for I by V(I), with

 $V(I) = \{(z_1, ..., z_n) \in \mathbb{C}^n \mid f(z_1, ..., z_n) = 0 \forall f \in I\}.$

For $Z \subset \mathbb{C}^n$ an algebraic subset, denote by Ann(A) the set of all polynomials $P(t_1, ..., t_n)$ vanishing in Z.

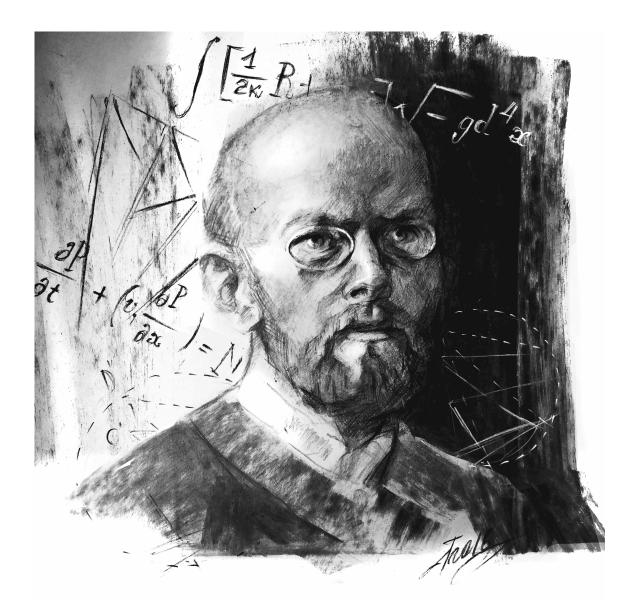
THEOREM: (strong Nullstellensatz). For any ideal $I \subset \mathbb{C}[t_1, ..., t_n]$ such that $\mathbb{C}[t_1, ..., t_n]/I$ has no nilpotents, one has Ann(V(I)) = I.

Proof: Later in this lecture.

REMARK: "Weak Nullstellensatz" claims that V(I) is never empty for any ideal *I*; "Strong Nullstellensatz" claims that *I* is uniquely determined by V(I) when R/I has no nilpotents.

M. Verbitsky

Strong Nullstellensatz and equivalence of categories



David Hilbert (Anna Gorban, 2018)

Strong Nullstellensatz and equivalence of categories

THEOREM: (strong Nullstellensatz). For any ideal $I \subset \mathbb{C}[t_1, ..., t_n]$ such that $\mathbb{C}[t_1, ..., t_n]/I$ has no nilpotents, one has Ann(V(I)) = I.

Now we deduce Theorem 1 from Strong Nullstellensatz. This would require us to construct a functor $\Psi : \mathcal{C}_R^{op} \longrightarrow \mathcal{A}$ ff. Since any object $R \in \mathcal{O}\mathcal{b}(\mathcal{C}_R)$ is given as $R = \mathbb{C}[t_1, ..., t_n]/I$, we define Ψ as $\Psi(R) := V(I)$; the functor $\Phi : \mathcal{A}$ ff $\longrightarrow \mathcal{C}_R^{op}$ was defined as $Z \longrightarrow \text{Ann}(Z)$.

Strong Nullstellensatz gives Ann(V(I)) = I, hence $\Phi(\Psi(R)) = R$ for any finitely generated ring. It remains to prove V(Ann(Z)) = Z.

Clearly, $V(Ann(Z)) \supset Z$: any point $z \in Z$ belongs to the set of common zeros of Ann(Z). On the other hand, Z is a set of common zeros of a system \mathscr{P} of polynomial equations, giving $Z = V(\mathscr{P}) \supset V(Ann(Z))$.

Localization

DEFINITION: Localization R(F)) of a ring R with respect to $F \in R$ is a ring $R[F^{-1}]$, which is formally generated by the elements of form a/F^n and relations $a/F^n \cdot b/F^m = ab/F^{n+m}$, $a/F^n + b/F^m = \frac{aF^m + bF^n}{F^{n+m}}$, and $aF^k/F^{k+n} = a/F^n$.

REMARK: Clearly, R(F) = R[t]/(tF - 1). **EXAMPLE:** $\mathbb{Z}[2^{-1}]$, the ring of rational numbers with denominators 2^k . **EXAMPLE:** $\mathbb{C}[t, t^{-1}]$, the ring of Laurent polynomials. **EXERCISE:** Let R be a finitely generated ring over a field k. **Prove that** $R[F^{-1}]$ is a finitely generated ring over k.

DEFINITION: $a \in R$ is called **nilpotent** if $a^n = 0$ for some n > 0.

CLAIM 1: Suppose that $R[F^{-1}] = 0$, where $F \in R$. Then F is nilpotent.

Proof. Step 1: R(F) = R[t]/(tF-1). Therefore, 1 = 0 implies 1 = (Ft-1)P, for some $P \in R[t]$.

Step 2: Let $P(t) = \sum a_i t^i$, where $a_i \in R$. Then 1 = (Ft - 1)P implies $a_i = a_{i-1}F$ for all i > 0, and $a_0 = 1$.

Step 3: This gives $P = \sum F^i t^i$, and $F^{n+1} = 0$.

Spectrum and localization

DEFINITION: Spectrum of a ring *R* is the set Spec *R* if its prime ideals.

EXERCISE: Let $R \xrightarrow{\varphi} R_1$ be a ring homomorphism. Prove that $\varphi^{-1}(\mathfrak{p})$ is a prime ideal, for any $\mathfrak{p} \in \operatorname{Spec} R_1$.

PROPOSITION: In other words, any morphism $R \longrightarrow R_1$ gives an injective map of spectra Spec $R[f^{-1}] \hookrightarrow \text{Spec } R$.

Proof: Suppose that \mathfrak{p}_f , $\mathfrak{q}_f \in \operatorname{Spec} R(f)$, and $\mathfrak{p} = \mathfrak{q}$ are their images in Spec R. Then for each $p \in \mathfrak{p}_f$, we have $f^N p \in \mathfrak{q} \subset \mathfrak{q}_f$; since \mathfrak{q} is prime, this implies that $p \in \mathfrak{q}$.

DEFINITION: Nilradical of a ring R is the set Nil(R) of all nilpotent elements of R.

THEOREM: Interesection P of all prime ideals of R is equal to Nil(R).

Proof: Clearly, $P \supset Nil(R)$. Assume that, conversely, $x \notin Nil(R)$. Then $R[x^{-1}] \neq 0$, hence $R[x^{-1}]$ contains a prime ideal (the maximal one), and its image in Spec R does not contaim x.

Rabinowitz trick

DEFINITION: Let $I \subset \mathbb{C}[t_1, ..., t_n]$ be an ideal. Recall that the set of common zeros of I is denoted by V(I) ("vanishing set", "null-set", "zero set"), and the set of all polynomials vanishing in $Z \subset \mathbb{C}^n$ is denoted Ann(Z) ("annihilator").

Theorem 1: Let $I \subset \mathbb{C}[t_1, ..., t_n]$ be an ideal, and f a polynomial function, vanishing on V(I). Then $f^N \in I$ for some $N \in \mathbb{Z}^{>0}$.

Proof. Step 1: Consider an ideal $I_1 \subset \mathbb{C}[t_1, ..., t_{n+1}]$ generated by $I \subset \mathbb{C}[t_1, ..., t_n]$ and $ft_{n+1}-1$. Since the submodule of R generated by $\langle ft_{n+1}-1, I \rangle$ has no common zeros, I_1 contains 1 by (weak) Nullstellensatz.

Step 2: Let $R := \mathbb{C}[t_1, ..., t_n]/I$. Consider the surjective map $\zeta : \mathbb{C}[t_1, ..., t_{n+1}] \longrightarrow R[f^{-1}]$ taking $t_1, ..., t_n$ to their images in R and mapping t_{n+1} to f^{-1} . Since $\zeta(I_1) = 0$, and $1 \in I_1$, one has 1 = 0 in $R[f^{-1}]$, giving $R[f^{-1}] = 0$. By Claim 1, f is nilpotent in R.

COROLLARY: (Strong Nullstellensatz)

Suppose that $R := \mathbb{C}[t_1, ..., t_n]/I$ is a ring without nilpotents. Then $I = Ann(V_I)$.

Proof: If $a \in Ann(V_I)$, then $a^n \in I$ by Theorem 1.

Zum Hilbertschen Nullstellensatz

The first time Hilbert Nullstellensatz was called by this name.

Zum Hilbertschen Nullstellensatz.

Von

J. L. Rabinowitsch in Moskau.

Satz. Verschwindet das Polynom $f(x_1, x_2, ..., x_n)$ in allen Nullstellen — im algebraisch abgeschlossenen Körper — eines Polynomideals α , so gibt es eine Potenz f^2 von f, die zu α gehört.

Beweis. Es sei $a = (f_1, f_2, ..., f_r)$, wo f_i die Variablen $x_1, ..., x_n$ enthalten. x_0 sei eine Hilfsvariable. Wir bilden das Ideal $\bar{a} = (f_1, f_2, ..., f_r, x_0 f - 1)$. Da der Voraussetzung nach f = 0 ist, sobald alle f_i verschwinden, so hat das Ideal \bar{a} keine Nullstellen.

Folglich muß ā mit dem Einheitsideal zusammenfallen. (Vgl. etwa bei K. Hentzelt, "Eigentliche Eliminationstheorie", § 6, Math. Annalen 88¹).) Ist also $1 = \sum_{i=1}^{i=r} F_i(x_0, x_1, ..., x_n) f_i + F_0 \cdot (x_0 f - 1)$ und setzen wir in dieser Identität $x_0 = \frac{1}{f}$, so ergibt sich:

$$1 = \sum_{i=1}^{i=r} F_i\left(\frac{1}{f}, x_1, ..., x_n\right) f_i = \frac{\sum_{i=1}^{r} \bar{F}_i f_i}{f^{\varrho}}.$$

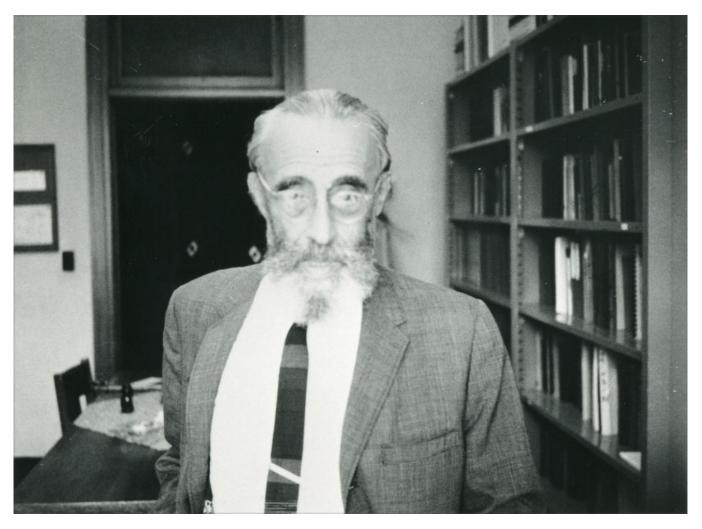
Folglich ist $f^{\varrho} = 0(a)$, w. z. b. w.

¹) Folgt auch schon aus der Kroneckerschen Eliminationstheorie.

J.L. Rabinowitsch, *Zum Hilbertschen Nullstellensatz,* Mathematische Annalen (1930), 102, p. 520-520

George Rainich

George Yuri Rainich (Rabinovich), 1886-1968.



Photograph by Paul R. Halmosh, 1964, Ann Arbor.

Hilbert Nullstellensatz as equivalence of categories

Theorem 1: Let \mathcal{C}_R be a category of finitely generated rings over \mathbb{C} without non-zero nilpotents and \mathcal{A}_{ff} – category of affine varieties. Consider the functor $\Phi : \mathcal{A}_{ff} \longrightarrow \mathcal{C}_R^{op}$ mapping an algebraic variety X to the ring of polynomial functions on X. Then Φ is an equivalence of categories.

Proof: Let $R = \mathbb{C}[t_1, ..., t_n]/I$. The functor $\Psi : \mathcal{C}_R^{op} \longrightarrow \mathcal{A}ff$ takes R to V_I (the common zeros set of I). Then $\Psi \circ \Phi$ takes R to the ring of polynomial functions on V_I , which is equal to $\frac{\mathbb{C}[t_1, ..., t_n]}{\operatorname{Ann}(V_I)}$. Since $\operatorname{Ann}(V_I) = I$, this functor takes R to itself.

For another direction, $\Phi \circ \Psi$ takes an algebraic set A to the common zeros of the ideal Ann(A), which is the same as A, because $A = V_{Ann}(A)$, by definition of an algebraic set.