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Radical ideals

DEFINITION: Let u ⊂ R be an ideal. A radical of u is the ideal
√
u := {x ∈ R | xn ∈ u for some n ∈ Z>0.}

An ideal u ⊂ R is called radical if u =
√
u

REMARK: An ideal u ⊂ R is radical if and only if R/u has no non-zero
nilpotents.

REMARK: Radical ideals in a finitely-generated ring R = OA are in bijective
correspondence with algebraic subsets of A (this is one of the forms of
strong Hilbert Nullstellensatz).

CLAIM: An ideal u ⊂ R is radical if and only if it is an intersection of
prime ideals.

Proof. Step1: Prime ideals containing u are the same as prime ideals in R/u.
Therefore, it suffices to prove that 0 is a radical ideal if and only if it is
an intersection of prime ideals.

Step 2: The quotient R/u has no nilpotents if and only if 0 is intersection
of all prime ideals in R/u (Lecture 3).
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Irreducible varieties (reminder)

DEFINITION: An affine variety A is called reducible if it can be expressed

as a union A = A1 ∪A2 of affine varieties, such that A1 6⊂ A2 and A2 6⊂ A1. If

such a decomposition is impossible, A is called irreducible.

CLAIM: An affine variety A is irreducible if and only if its ring of polynomial

functions OA has no zero divizors.

Proof: If A = A1 ∪ A2 is a decomposition of A into a non-trivial union

of subvarieties, choose a non-zero function f ∈ OA vanishing at A1 and g

vanishing at A2. The product of these non-zero functions vanishes in A =

A1 ∪ A2, hence fg = 0 in OA. Conversely, if fg = 0, we decompose

A = Vf ∪ Vg.
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Primary ideals

DEFINITION: An ideal u is called primary if
√
u is a prime ideal.

PROPOSITION: Let u ⊂ R = OA be an ideal, and Vu ⊂ A its zero set. Then

u is primary if and only if the algebraic variety Vu is irreducible.

Proof. Step1: By Hilbert Nullstellensatz, the annihilator ideal AnnVu coin-

cides with
√
u. Indeed, Vu = V√u, hence, by Hilbert Nullstellensatz, AnnV√u

=
√
u. However, V√u = Vu, because f(x) = 0⇔ fn(f) = 0. This gives

AnnVu = AnnV√u
=
√
u.

Step 2: The variety A = V√u is irreducible if and only if OA = C[t1,...,tn]
AnnA

has

no zero divisors, which is equivalent to AnnA =
√
u being a prime ideal.
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Irreducible ideals

DEFINITION: Suppose that J, and Ji are ideals in R, and J is represented

as J =
⋂
i Ji. The decomposition J =

⋂
i Ji is called non-trivial if Ji 6= J and

Ji 6⊂ Jj for all i, j. An ideal J ⊂ R is called irreducible if it does not admit a

non-trivial decomposition J =
⋂
i Ji. An irreducible decomposition of J is

a non-trivial decomposition J =
⋂
i Ji, where all Ji are irreducible.

LEMMA: In a Noetherian ring R, every ideal admits an irreducible de-

composition.

Proof: Let R be the set of all ideals not admitting an irreducible decomposi-

tion, and J a maximal element in this set; it exists, because R is Noetherian,

unless R is empty. Since J is not irreducible, we can decompose J as
⋂
i Ji,

where all Ji are strictly bigger than J, hence admit an irreducible decompo-

sition Ji =
⋂
j Jij. Then J =

⋂
i,j Jij gives an irreducible decomposition for J.
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Primary decomposition

LEMMA: An irreducible ideal J ⊂ R in a Noetherian ring is primary.

Proof. Step1: Replacing R by R/J, we find that it suffices to show that 0
is primary when it is irreducible. Let xy = 0 be some non-trivial zero divisors
in R, and A(xk) := {z ∈ R |zxk = 0}. Since the chain A(x) ⊂ A(x2) ⊂ ...
stabilizes, we have A(xn) = A(xn+1) for some n > 0.

Step 2: The ideals (xn) and (y) generated by xn and y satisfy (xn)∩ (y) = 0.
Indeed, each a ∈ (xn)∩(y) satisfies a ∈ A(x)∩(xn), hence a = bxn and bxn+1 =
0, giving b ∈ A(xn+1). Since A(xn) = A(xn+1), this implies a = bxn = 0. Since
0 is irreducible, this implies xn = 0, hence 0 is primary (all zero divisors are
nilpotents).

DEFINITION: We say that an ideal J ⊂ R admits a primary decomposi-
tion if R is represented as an intersection of primary ideals.

THEOREM: (Noether-Lasker theorem)
Let R be a Noetherian ring. Then every ideal J ⊂ R admits a primary
decomposition.

Proof: Indeed, every ideal admits an irreducible decomposition, and irre-
ducible ideals are primary.
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Emmy Noether

Amalie Emmy Noether (1882-1935).
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Emanuel Lasker

Emanuel Lasker (1868-1941).
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Group representations

DEFINITION: Representation of a group G is a homomorphism G−→GL(V ).

In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no G-

invariant subspaces. Semisimple representation is a direct sum of irreducible

ones.

Let V be a vector space over a field k. The space of bilinear maps V ×
V −→ k is denoted V ∗ ⊗ V ∗.

REMARK: If the group G acts on a vector space V , it G acts on V ∗ ⊗ V ∗

as g(h)(x, y) = h(g−1(x), g−1(y)), for any g ∈ G, h ∈ V ∗ ⊗ V ∗ and x, y ∈ V .

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is

called G-invariant if the corresponding tensor h ∈ V ∗ ⊗ V ∗ is G-invariant.
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G-invariant metrics

CLAIM:
A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).

COROLLARY: Let V be a representation of a finite group (over R or C).
Then V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let h be an arbitrary metric, and 1
|G|

∑
g∈G g(h) its average over the G

action. The previous claim implies that it is a metric. Since G acts on itself
bijectively, interchanging all terms in the sum, it is G-invariant.

COROLLARY: Let E ⊂ V be a subrepresentation in a finite group repre-
sentation over R or C. Then V can be decomposed onto a direct sum of
two G-representations V = W ⊕W ′.

Proof: Choose a G-invariant metric on V , and let W⊥ be the orthogonal
complement to W . Then W⊥ is also G-invariant (check this). This gives a
decomposition V = W ⊕W⊥.

COROLLARY: Any finite-dimensional representation of a finite group
is semisimple.
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Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps

...−→A1 −→A2 −→A3 −→ ... such the kernel of each map is the image of the

previous one. A short exact sequence is exact sequence of form 0−→A
i−→

B
j−→ C −→ 0. Here “exact” means that i is injective, j surjective, and

the image of i is the kernel of j.

DEFINITION: A functor A−→ FA on the category of R-modules or vector

spaces is called left exact if any exact sequence 0−→A−→B −→ C −→ 0 is

mapped to an exact sequence

0−→ FA−→ FB −→ FC,

right exact if it is mapped to an exact sequence

FA−→ FB −→ FC −→ 0,

and exact if the sequence

0−→ FA−→ FB −→ FC −→ 0

is exact.
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Invariants and coinvariants

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V G as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v − g(v), where g ∈ G, v ∈ V .

CLAIM: Let V be an irreducible representation of G. Then its invariants
and co-ivariants are equal 0 if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then VG = V G.

EXERCISE: Prove that the functor V −→ V G is left exact, and V −→ VG
is right exact.

COROLLARY: For any finite group G, the functor of G-invariants
V −→ V G on the category of complex representations of G is exact.

REMARK: The averaging map

m−→
1

|G|
∑
g∈G

g(m)

gives a projection of V to V G, and the kernel of this map is the kernel of
the natural projection V −→ VG
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Ring of invariants and quotient space

DEFINITION: Action of a group G on an affine manifold A is the action

of G on the ring OA of polynomial functions on A.

REMARK: By Strong Nullstellensatz, this is the same as action of G on

A by automorphisms.

REMARK: We want to define the quotient space A/G as the algebraic variety

associated with the invariant ring OG
A .

Problem # 1: We need to show that the ring OG
A is finitely generated

(Noether theorem).

Problem # 2: We need to identify the maximal ideals in OG
A with the

elements of the quotient set A/G.
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group

acting on R by automorphisms. Then the ring RG of G-invariants is finitely

generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RG is finitely generated for the ring of polynomials R =

C[z1, ..., zn], where G acts on polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of the functor V −→ V G
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