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Radical ideals

DEFINITION: Let uC R be an ideal. A radical of u is the ideal

Vi:={ze€R | 2" c€u for somen ez}
An ideal u C R is called radical if u = \/u

REMARK: An ideal u C R is radical if and only if R/u has no non-zero
nilpotents.

REMARK: Radical ideals in a finitely-generated ring R = © 4 are in bijective
correspondence with algebraic subsets of A (this is one of the forms of
strong Hilbert Nullstellensatz).

CLAIM: An ideal u C R is radical if and only if it is an intersection of
prime ideals.

Proof. Stepl: Prime ideals containing u are the same as prime ideals in R/u.
Therefore, it suffices to prove that O is a radical ideal if and only if it is
an intersection of prime ideals.

Step 2: The quotient R/u has no nilpotents if and only if O is intersection
of all prime ideals in R/u (Lecture 3). =
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Irreducible varieties (reminder)

DEFINITION: An affine variety A is called reducible if it can be expressed
as a union A = A1 U A, of affine varieties, such that A1 € Ao and A, ¢ Aq. If
such a decomposition is impossible, A is called irreducible.

CLAIM: An affine variety A is irreducible if and only if its ring of polynomial
functions ©4 has no zero divizors.

Proof: If A = Ay U Ay is a decomposition of A into a non-trivial union
of subvarieties, choose a non-zero function f € ©4 vanishing at Ay and g
vanishing at A,. The product of these non-zero functions vanishes in A =
A1 U Ao, hence fg = 0 In ©4. Conversely, if fg = 0, we decompose
A= Vf U Vg. |
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Primary ideals
DEFINITION: An ideal u is called primary if 4/u is a prime ideal.

PROPOSITION: LetuC R = ©4 be an ideal, and V;, C A its zero set. Then
u 1S primary if and only if the algebraic variety V, is irreducible.

Proof. Stepl: By Hilbert Nullstellensatz, the annihilator ideal Anny, coin-
cides with y/u. Indeed, V; = V\/ﬁ, hence, by Hilbert Nullstellensatz, Annvﬁ =

Vu. However, V u = Vu, because f(x) =0« f*(f) = 0. This gives

Anny, = AnnV\/a = V.

Step 2: The variety A =V, 4 is irreducible if and only if 04 = Eliutul has

no zero divisors, which is equivalent to Anny = +/u being a prime ideal. =
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Irreducible ideals

DEFINITION: Suppose that J, and J; are ideals in R, and J is represented
as J =();J;. The decomposition J =), J; is called non-trivial if J;, = J and
J; ¢ J; for all 4,5. An ideal J C R is called irreducible if it does not admit a
non-trivial decomposition J = ; J;. An irreducible decomposition of J is
a non-trivial decomposition J =(); J;, where all J; are irreducible.

LEMMA: In a Noetherian ring R, every ideal admits an irreducible de-
composition.

Proof: Let R be the set of all ideals not admitting an irreducible decomposi-
tion, and J a maximal element in this set; it exists, because R is Noetherian,
unless R is empty. Since J is not irreducible, we can decompose J as (); J;,
where all J; are strictly bigger than J, hence admit an irreducible decompo-
sition J; = (; J;;. Then J =1(); ;J;; gives an irreducible decomposition for J.
|
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Primary decomposition
LEMMA: An irreducible ideal J C R in a Noetherian ring is primary.

Proof. Stepl: Replacing R by R/J, we find that it suffices to show that O
is primary when it is irreducible. Let xy = 0 be some non-trivial zero divisors
in R, and A(zF) := {z € R |22 = 0}. Since the chain A(z) C A(z2) C ...
stabilizes, we have 2A(z") = A(z"T1) for some n > 0.

Step 2: The ideals (™) and (y) generated by z"™ and y satisfy ()N (y) = 0.
Indeed, each a € (z™)N(y) satisfies a € A(z)N(z™), hence a = bz™ and bz T1 =
0, giving b € A(z"T1). Since A(z™) = A(z" 1), this implies a = bz™ = 0. Since
O is irreducible, this implies ™ = 0, hence 0 is primary (all zero divisors are
nilpotents). m

DEFINITION: We say that an ideal J C R admits a primary decomposi-
tion if R is represented as an intersection of primary ideals.

THEOREM: (Noether-Lasker theorem)
Let R be a Noetherian ring. Then every ideal J C R admits a primary
decomposition.

Proof: Indeed, every ideal admits an irreducible decomposition, and irre-
ducible ideals are primary. m
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Emmy Noether

Amalie Emmy Noether (1882-1935).
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Emanuel Lasker

CORREIOS 19088
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Emanuel Lasker (1868-1941).
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Group representations

DEFINITION: Representation of a group G is a homomorphism G — GL(V).
In this case, V is called representation space, and a representation.

DEFINITION: Irreducible representation is a representation having no G-
invariant subspaces. Semisimple representation is a direct sum of irreducible
ones.

Let V be a vector space over a field k. The space of bilinear maps V x
V — k is denoted V* ® V*.

REMARK: If the group G acts on a vector space V, it G acts on V*® V*
as g(h)(z,y) = h(g_l(a:),g_l(y)), forany ge G, heV*V*and x,yc V.

DEFINITION: A metric h (Euclidean or Hermitian) on a vector space V is
called G-invariant if the corresponding tensor h € V* ® V* is G-invariant.
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G-invariant metrics

CLAIM:
A sum of two Hermitian (Euclidean) metrics is Hermitian (Euclidean).
|

COROLLARY: Let V be a representation of a finite group (over R or C).
Then V admits a G-invariant metric (Hermitian or Euclidean).

Proof: Let h be an arbitrary metric, and |1 >_geq g(h) its average over the G
action. The previous claim implies that it |s a metric. Since G acts on itself
bijectively, interchanging all terms in the sum, it is G-invariant. m

COROLLARY: Let E C V be a subrepresentation in a finite group repre-
sentation over R or C. Then V can be decomposed onto a direct sum of
two G-representations V=W ¢ W'.

Proof: Choose a G-invariant metric on V, and let WL be the orthogonal
complement to W. Then W+ is also G-invariant (check this). This gives a
decomposition V=W o W-'. =

COROLLARY: Any finite-dimensional representation of a finite group
IS semisimple. =
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Exact functors

DEFINITION: An exact sequence is a sequence of vector spaces and maps
... — A1 —> Ao —> A3z — ... such the kernel of each map is the image of the

previous one. A short exact sequence is exact sequence of form O v A s

B -5 C — 0. Here “exact” means that i is injective, j surjective, and
the image of : is the kernel of ;.

DEFINITION: A functor A— F'A on the category of R-modules or vector
spaces is called left exact if any exact sequence 0O — A —B —C —0 is
mapped to an exact sequence

O—FA—FB— FC,

right exact if it is mapped to an exact sequence

FA—FB—FC—Q0,

and exact if the sequence

O—FA—FB—FC—70

IS exact.
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Invariants and coinvariants

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V& as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v — g(v), where g € G,v € V.

CLAIM: Let V be an irreducible representation of G. Then its invariants
and co-ivariants are equal O if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then Vg = VG,

EXERCISE: Prove that the functor V — VG is left exact, and V — Vg
IS right exact.

COROLLARY: For any finite group G, the functor of G-invariants
V — V& on the category of complex representations of G is exact.

REMARK: The averaging map

gives a projection of V to VG, and the kernel of this map is the kernel of
the natural projection V — Vo
12
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Ring of invariants and quotient space

DEFINITION: Action of a group G on an affine manifold A is the action
of G on the ring ©4 of polynomial functions on A.

REMARK: By Strong Nullstellensatz, this is the same as action of G on
A by automorphisms.

REMARK: We want to define the quotient space A/G as the algebraic variety
associated with the invariant ring O%.

Problem # 1: We need to show that the ring (C)g is finitely generated
(Noether theorem).

Problem #£ 2: We need to identify the maximal ideals in @g with the
elements of the quotient set A/G.
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group
acting on R by automorphisms. Then the ring RG of G-invariants is finitely
generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RC is finitely generated for the ring of polynomials R =
Clz1, ..., zn], where G acts on polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of the functor V. — V&
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