Commutative Algebra

lecture 6: The ring of *G*-invariants

Misha Verbitsky

IMPA, sala 232

January 14, 2022

Primary ideals

DEFINITION: An ideal $\mathfrak{u} \subset R$ is called **primary** if $\sqrt{\mathfrak{u}} := \{x \in R \mid x^n \in \mathfrak{u}\}$ (the radical of \mathfrak{u}) is a prime ideal.

CLAIM: An ideal \mathfrak{u} is primary if and only if for any $x, y \in R$ such that $xy \in \mathfrak{u}$, **one has** $x^n \in \mathfrak{u}$ or $y^n \in \mathfrak{u}$, for n sufficiently big.

Proof. Step1: Suppose that for any $x, y \in R$ such that $xy \in \mathfrak{u}$, one has $x^n \in \mathfrak{u}$ or $y^n \in \mathfrak{u}$ for n sufficiently big. $x^n \in \mathfrak{u}$ for n sufficiently big is equivalent to $x \in \sqrt{\mathfrak{u}}$. By definition of $\sqrt{\mathfrak{u}}$, for any x, y such that $xy \in \sqrt{\mathfrak{u}}$, one has $x^m y^m \in \mathfrak{u}$ for $m \gg 0$, which implies that $x^{mn} \in \mathfrak{u}$ or $y^{mn} \in \mathfrak{u}$ for $n \gg 0$. Then $xy \in \sqrt{\mathfrak{u}}$ implies that $x \in \sqrt{\mathfrak{u}}$ or $y \in \sqrt{\mathfrak{u}}$, hence $\sqrt{\mathfrak{u}}$ is prime.

Step 2: Conversely, assume that $\sqrt{\mathfrak{u}}$ is prime. Then for any x, y such that $xy \in \mathfrak{u} \subset \sqrt{\mathfrak{u}}$, one has $x \in \sqrt{\mathfrak{u}}$ or $y \in \sqrt{\mathfrak{u}}$, because \mathfrak{u} is prime; **this implies that** $x^m \in \sqrt{\mathfrak{u}}$ or $y^m \in \sqrt{\mathfrak{u}}$.

Irreducible ideals

DEFINITION: Suppose that J, and J_i are ideals in R, and J is represented as $J = \bigcap_i J_i$. The decomposition $J = \bigcap_i J_i$ is called **non-trivial** if $J_i \neq J$ and $J_i \notin J_j$ for all i, j. An ideal $J \subset R$ is called **irreducible** if it does not admit a non-trivial decomposition $J = \bigcap_{i=1}^n J_i$, $n \ge 2$. An irreducible decomposition of J is a non-trivial decomposition $J = \bigcap_i J_i$, where all J_i are irreducible.

LEMMA: In a Noetherian ring *R*, every ideal admits an irreducible decomposition.

Proof: Let \mathfrak{R} be the set of all ideals not admitting an irreducible decomposition. By absurd, assume that \mathfrak{R} is non-empty. Let J be a maximal element in this set; it exists, because R is Noetherian. Since J is not irreducible, we can decompose J as $\bigcap_i J_i$, where all J_i are strictly bigger than J, hence admit an irreducible decomposition $J_i = \bigcap_j J_{ij}$. Then $J = \bigcap_{i,j} J_{ij}$ gives an irreducible decomposition for J.

Primary decomposition

LEMMA: An irreducible ideal $J \subset R$ in a Noetherian ring is primary.

Proof. Step1: Replacing R by R/J, we find that it suffices to show that 0 is primary when it is irreducible. Let xy = 0 be non-trivial zero divisors in R, and $\mathfrak{A}(x^k) := \{z \in R \mid |zx^k = 0\}$. Since the chain $\mathfrak{A}(x) \subset \mathfrak{A}(x^2) \subset ...$ stabilizes, we have $\mathfrak{A}(x^n) = \mathfrak{A}(x^{n+1})$ for some n > 0.

Step 2: The ideals (x^n) and (y) generated by x^n and y satisfy $(x^n) \cap (y) = 0$. Indeed, each $a \in (x^n) \cap (y)$ satisfies $a \in \mathfrak{A}(x) \cap (x^n)$, hence $a = bx^n$ and $bx^{n+1} = 0$, giving $b \in \mathfrak{A}(x^{n+1})$. Since $\mathfrak{A}(x^n) = \mathfrak{A}(x^{n+1})$, this implies $a = bx^n = 0$. Since 0 is irreducible, this implies $x^n = 0$, hence 0 is primary (all zero divisors are nilpotents).

DEFINITION: We say that an ideal $J \subset R$ admits a primary decomposition if R is represented as an intersection of primary ideals.

THEOREM: (Noether-Lasker theorem)

Let *R* be a Noetherian ring. Then every ideal $J \subset R$ admits a primary decomposition.

Proof: Indeed, every ideal admits an irreducible decomposition, and irreducible ideals are primary. ■

Group representations (reminder)

DEFINITION: Representation of a group G is a homomorphism $G \longrightarrow GL(V)$. In this case, V is called representation space, and a representation. We consider V as a vector space with the linear action of a group G. A morphism of G-representations is a linear map compatible with the G-action.

DEFINITION: Irreducible representation of G is a representation having no G-invariant subspaces. **Semisimple representation** is a direct sum of irreducible ones.

Split exact sequences

DEFINITION: An exact sequence of *G*-representations is a sequence of *G*-representations and mopprusms $\dots \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow \dots$ such the kernel of each map is the image of the previous one. A short exact sequence of *G*-representations is an exact sequence of form

$$0 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0. \quad (*)$$

Here "exact" means that *i* is injective, *j* surjective, and image of *i* is kernel of *j*. A short exact sequence (*) of *G*-representations is split if there exists a morphism $\varphi : C \longrightarrow B$ of representations such that $\varphi \circ j = \text{Id}_C$. The map φ is called a section of the surjective morphism *j*.

REMARK: Equivalently, (*) is split when *B* is decomposed onto a direct sum $B = \operatorname{im} i \oplus C_0$; in this case *j* defines an isomorphism $j : C_0 \longrightarrow C$.

EXERCISE: Suppose that any exact sequence of G-representations splits. **Prove that any finite-dimensional representation of** G **is semisimple.**

Semisimplicity of representations of finite groups

PROPOSITION: Let $\Re e_{p_k}(G)$ be the category of representations of a finite group G over a field k, with $\operatorname{char}(k)$ coprime with |G|. Then any short exact sequence of G-representations splits.

Proof. Step1: Let $0 \rightarrow A \xrightarrow{i} B \xrightarrow{j} C \rightarrow 0$ be an exact sequence of G-representations. Choose a basis $\{z_i\}$ in C, and let $\{\tilde{z}_i\}$ be preimages of z_i in B. Axiom of Choice gives a way to chose these preimages even if the set $\{z_i\}$ is infinite. Let $\varphi : C \rightarrow B$ take z_i to \tilde{z}_i . Then $B = i(A) \oplus \varphi(C)$. However, this does not imply that (*) splits, because the map φ is not necessarily G-invariant, and the space $\varphi(C)$ is not necessarily a subrepresentation.

Step 2: We are going to modify φ such that it becomes *G*-invariant. Consider the action of *G* on Hom(*C*, *B*) taking $g \in G$ and $u \in \text{Hom}(C, B)$ to $gug^{-1} \in$ Hom(*C*, *B*); here the first "g" denotes the corresponding element in GL(B)and the " g^{-1} " denotes the element in GL(C). Then φ is a morphism of *G*-representations if and only if φ is *G*-invariant.

M. Verbitsky

Semisimplicity of representations of finite groups (2)

PROPOSITION: Let $\Re e_{P_k}(G)$ be the category of representations of a finite group G over a field k, with char(k) coprime with |G|. Then any short exact sequence of G-representations splits.

Proof. Step1: Let $0 \longrightarrow A \xrightarrow{i} B \xrightarrow{j} C \longrightarrow 0$ be an exact sequence of *G*-representations. Consider *j* as a surjection of vector spaces and find a section $\varphi : C \longrightarrow B$ (not necessarily *G*-invariant) using a basis in *C*.

Step 2: To split this exact sequence of representations, φ **should be chosen** *G*-invariant.

Step 3: Since char k is coprime with |G|, the number |G| is invertible in k. Let $\varphi_0 := \frac{1}{|G|} \sum_{g \in G} g(\varphi)$. This is a sum of all elements in a *G*-orbit, hence it is *G*-invariant. For any $v \in C$, one has

$$i(\varphi_0(v)) = \frac{1}{|G|} \sum_{g \in G} j(g(\varphi))(g^{-1}v) = \frac{1}{|G|} \sum_{g \in G} g(j\varphi((g^{-1}v))) = \frac{1}{|G|} \sum_{g \in G} g(g^{-1}(v)) = v,$$

because j commutes with φ . This implies that φ_0 is a *G*-invariant section

of *j*. ■

COROLLARY: Let G be a finite group and k a field, char k coprime with |G|. Then any finite-dimensional representation of G over k is semisimple.

M. Verbitsky

Exact functors (reminder)

DEFINITION: A functor $A \longrightarrow FA$ on the category of *R*-modules or vector spaces is called **left exact** if any exact sequence $0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ is mapped to an exact sequence

 $0 \longrightarrow FA \longrightarrow FB \longrightarrow FC,$

right exact if it is mapped to an exact sequence

 $FA \longrightarrow FB \longrightarrow FC \longrightarrow 0,$

and exact if the sequence

$$0 \longrightarrow FA \longrightarrow FB \longrightarrow FC \longrightarrow 0$$

is exact.

DEFINITION: Let G be a finite group, and V its representation. Define the space of G-invariants V^G as the space of all G-invariant vectors, and the space of coinvariants as the quotient of V by its subspace generated by vectors v - g(v), where $g \in G, v \in V$.

EXERCISE: Prove that the functor $V \longrightarrow V^G$ is left exact, and $V \longrightarrow V_G$ is right exact.

The functor $V \longrightarrow V^G$ is exact

CLAIM: Let V be an irreducible representation of G. Then its invariants and co-ivariants are equal 0 if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then $V_G = V^G$.

COROLLARY: For any finite group *G*, the functor of *G*-invariants is exact.

REMARK: The averaging map

$$m \longrightarrow \frac{1}{|G|} \sum_{g \in G} g(m)$$

gives a projection of V to V^G , and the kernel of this map is the kernel of the natural projection $V \longrightarrow V_G$

Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over \mathbb{C} , and G a finite group acting on R by automorphisms. Then **the ring** R^G of G-invariants is finitely generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that R^G is Noetherian.

2. Prove that R^G is finite generated for $R = \mathbb{C}[z_1, ..., z_n]$, where R acts on polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of $V \longrightarrow V^G$

Emmy Noether (1882-1935)

Emmy Noether, illustration by María Castelló Solbes

Ideals in R and R^G

LEMMA: Let R be a ring, G a finite group acting on R, R^G the ring of G-invariants, and $I \subset R^G$ an ideal. Then **the ideal** RI **satisfies** $Av_G(RI) = Av_G(R)I = R^GI = I$, where $Av_G : R \longrightarrow R^G$ denotes the averaging map.

COROLLARY: Let $I_1 \subsetneq I$ be ideals in R^G . Then $RI_1 \subsetneq RI$.

COROLLARY 1: In these assumptions, if R is Noetherian, then R^G is also Noetherian.

Proof: Any infinite, strictly monotonous sequence $I_0 \subsetneq I_1 \subsetneq ...$ of ideals in \mathbb{R}^G gives a strictly monotonous sequence $\mathbb{R}I_0 \subsetneq \mathbb{R}I_1 \subsetneq ...$ in \mathbb{R} .

Graded rings

DEFINITION: A graded ring is a ring A^* , $A^* = \bigoplus_{i=0}^{\infty} A^i$, with multiplication which satisfies $A^i \cdot A^j \subset A^{i+j}$ ("grading is multiplicative"). A graded ring is called **of finite type** if all A^i are finitely dimensional.

We will usually assume that A^0 is the base field.

EXAMPLE: Polynomial ring $\mathbb{C}[V] = \bigoplus_i \operatorname{Sym}^i V$ is clearly graded.

Graded rings (2)

Claim 1: Let A^* be a graded ring of finite type. Then A^* is Noetherian \Leftrightarrow it is finitely generated.

Proof. Step1: If A^* is finitely generated, it is Noetherian by Hilbert's basis theorem.

Step 2: Conversely, suppose that A^* is Noetherian. Then the ideal $\bigoplus_{i>0} A^i \subset A^*$ is finitely generated. Let $a_i \in A^{n_i}$ be generators of this ideal over A^* . We are going to show that products of a_i generate A^* .

Step 3: Let $z \in A^*$ be a graded element of smallest degree which is not generated by products of a_i . Since a_i generate the ideal $\bigoplus_{i>0} A^i \subset A^*$, we can express z as $z = \sum_i f_i a_i$, where $f_i \in A^*$. However, deg $f_i < \deg z$, hence all f_i are generated by products of a_i . Then all f_i are generated by products of a_i .

A caution: In this argument, two notions of "finitely generated" are present: finitely generated ideals (an additive notion) and finitely generated rings over \mathbb{C} (multiplicative). **These two notions are completely different!** One is defined for ideals (or *R*-modules), another for a ring over a field. Only the name is the same (bad terminology).

Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis $z_1, ..., z_n$, and $\mathbb{C}[V] = \bigoplus_i \operatorname{Sym}^i V = \mathbb{C}[z_1, ..., z_n]$ the corresponding polynomial ring. Suppose that G acts on V by linear automorphisms. We extend this action to the symmetric tensors $\bigoplus_i \operatorname{Sym}^i V$ multiplicatively. This implies that G acts on $\mathbb{C}[V]$ by automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants) Let *G* act linearly on the polynomial ring $\mathbb{C}[V]$. Then the invariant ring $\mathbb{C}[V]^G$ is finitely generated.

Proof. Step1: Since the action of G preserves the grading on $\mathbb{C}[V]$, the ring $\mathbb{C}[V]^G$ is graded and of finite type.

Step 2: $\mathbb{C}[V]^G$ is Noetherian, because $\mathbb{C}[V]$ is Noetherian, and the ring of invariants R^G is Noetherian if R is Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim

■

Noether theorem

THEOREM: (Noether theorem)

Let R be a finitely generated ring over \mathbb{C} , and G a finite group acting on R by automorphisms. Then the ring R^G of G-invariants is finitely generated.

Proof. Step1: Let $f_1, ..., f_m$ be generators of R, and $\{g_1, ..., g_k\} = G$. Consider the space $V \subset R$ generated by all vectors $g_i f_j$. Clearly, $V \subset R$ is V-invariant, and the natural homomorphism $\mathbb{C}[V] \longrightarrow R = \mathbb{C}[V]/I$ is surjective and G-invariant.

Step 2: The natural map $\mathbb{C}[V]^G \longrightarrow R^G$ is surjective, because the functor $W \longrightarrow W^G$ is exact.

Step 3: The ring $\mathbb{C}[V]^G$ is finitely generated by Noether theorem for polynomial invariants, hence its quotient R^G is also finitely generated.