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Primary ideals

DEFINITION: An ideal u C R is called primary if Ju:={zx € R | 2™ € u}
(the radical of u) is a prime ideal.

CLAIM: An ideal u is primary if and only if for any z,y € R such that xy € u,
one has z"™ € u or y"™ € u, for n sufficiently big.

Proof. Stepl: Suppose that for any z,y € R such that xzy € u, one has
x™ € u or y" € u for n sufficiently big. =™ € u for n sufficiently big is equivalent
to z € yu. By definition of /u, for any z,y such that zy € \/u, one has
xMy™ € u for m > 0, which implies that ™" € u or y™" ¢ u for n > O.
Then zy € v/u implies that z € /u or y € v/u, hence y/u is prime.

Step 2: Conversely, assume that y/u is prime. Then for any z,y such that
xy € u C 4/u, one has ¢ € y/u or y € v/u, because u is prime; this implies that

2™ e Juor y"meJu. m
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Irreducible ideals

DEFINITION: Suppose that J, and J; are ideals in R, and J is represented
as J =();J;. The decomposition J =), J; is called non-trivial if J;, = J and
J; ¢ J; for all 4,5. An ideal J C R is called irreducible if it does not admit a
non-trivial decomposition J =N"_; J;, n > 2. An irreducible decomposition
of J is a non-trivial decomposition J =); J;, where all J; are irreducible.

LEMMA: In a Noetherian ring R, every ideal admits an irreducible de-
composition.

Proof: Let R be the set of all ideals not admitting an irreducible decomposi-
tion. By absurd, assume that R is non-empty. Let J be a maximal element in
this set; it exists, because R is Noetherian. Since J is not irreducible, we can
decompose J as (); J;, where all J; are strictly bigger than J, hence admit an
irreducible decomposition J; = (;J;;. Then J =, ; J;; gives an irreducible
decomposition for J. =
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Primary decomposition
LEMMA: An irreducible ideal J C R in a Noetherian ring is primary.

Proof. Stepl: Replacing R by R/J, we find that it suffices to show that 0 is
primary when it is irreducible. Let xy = O be non-trivial zero divisors in R, and
A(zk) ;= {z € R |zz*¥ = 0}. Since the chain A(z) C A(22) C ... stabilizes,
we have A(z") = A(z"t1) for some n > 0.

Step 2: The ideals (™) and (y) generated by 2" and y satisfy ()N (y) = 0.
Indeed, each a € (z™)N(y) satisfies a € A(z)N(z™), hence a = bz™ and bz T1 =
0, giving b € A(z"t1). Since A(z") = A(z"T1), this implies a = bz" =
Since O is irreducible, this implies ™ = 0, hence 0 is primary (all zero divisors
are nilpotents). m

DEFINITION: We say that an ideal J C R admits a primary decomposi-
tion if R is represented as an intersection of primary ideals.

THEOREM: (Noether-Lasker theorem)
Let R be a Noetherian ring. Then every ideal J C R admits a primary
decomposition.

Proof: Indeed, every ideal admits an irreducible decomposition, and irre-
ducible ideals are primary. m
4
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Group representations (reminder)

DEFINITION: Representation of a group G is a homomorphism G — GL(V).
In this case, V is called representation space, and a representation. We
consider V as a vector space with the linear action of a group G. A morphism
of GG-representations is a linear map compatible with the G-action.

DEFINITION: Irreducible representation of (G is a representation having
no G-invariant subspaces. Semisimple representation is a direct sum of
irreducible ones.
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Split exact sequences

DEFINITION: An exact sequence of G-representations is a seguence
of G-representations and moprpusms ... — Ay — A> — A3 — ... such the
kernel of each map is the image of the previous one. A short exact sequence
of G-representations is an exact sequence of form

0O— A Z'>BL>(J—>O. (%)

Here “exact” means that : is injective, ;5 surjective, and image of : is
kernel of j. A short exact sequence (*) of G-representations is split if there
exists a morphism ¢ : ' — B of representations such that oo j7 =Ido. The
map ¢ is called a section of the surjective morphism j.

REMARK: Equivalently, (*) is split when B is decomposed onto a direct
sum B =im:&® C; in this case 5 defines an isomorphism j5: Co— C.

EXERCISE: Suppose that any exact sequence of G-representations splits.
Prove that any finite-dimensional representation of G is semisimple.
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Semisimplicity of representations of finite groups

PROPOSITION: Let Rep,.(G) be the category of representations of a finite
group G over a field k, with char(k) coprime with |G|. Then any short exact
sequence of (G-representations splits.

Proof. Stepl: Let 0 — A L> B i> C — 0 be an exact sequence of G-

representations. Choose a basis {z;} in C, and let {z;} be preimages of z; in B.
Axiom of Choice gives a way to chose these preimages even if the set {z;} is
infinite. Let o : C — B take z; to z;. Then B =1i(A) ® ¢(C). However, this
does not imply that (*) splits, because the map ¢ is not necessarily
G-invariant, and the space ¢o(C) is not necessarily a subrepresentation.

Step 2: We are going to modify ¢ such that it becomes G-invariant. Consider
the action of G on Hom(C, B) taking ¢ € G and u € Hom(C, B) to gug—! ¢
Hom(C, B); here the first “¢"” denotes the corresponding element in GL(B)
and the “g—1" denotes the element in GL(C). Then ¢ is a morphism of
G-representations if and only if ¢ is G-invariant.
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Semisimplicity of representations of finite groups (2)

PROPOSITION: Let Rep,.(G) be the category of representations of a finite
group G over a field k, with char(k) coprime with |G|. Then any short exact
sequence of G-representations splits.

Proof. Stepl: Let 00— A s B .y C—30 be an exact sequence of
G-representations. Consider 3 as a surjection of vector spaces and find a
section ¢ : C — B (not necessarily G-invariant) using a basis in C.

Step 2: To split this exact sequence of representations, ¢ should be chosen
G-invariant.

Step 3: Since chark is coprime with |G|, the number |G| is invertible in k. Let
0o = l—azgegg(go). This is a sum of all elements in a G-orbit, hence it
is G-invariant. For any v € (', one has

i(po(0)) = — Y (g ) = = Y gGe((g o)) = = Y g(g () =,

|G| geG |G| geG |G| geG
because 3 commutes with . This implies that ¢g is a G-invariant section
of j. m

COROLLARY: Let G be a finite group and k a field, char k coprime with |G]|.
Then any finite-dimensional representation of G over k£ is semisimple.
8
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Exact functors (reminder)

DEFINITION: A functor A— FA on the category of R-modules or vector
spaces is called left exact if any exact sequence 0 — A —B —(C —O0 is
mapped to an exact sequence

O—FA—FB— FC,

right exact if it is mapped to an exact sequence

FA—FB—FC—0,

and exact if the sequence

O—FA—FB—FC—70

IS exact.

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V& as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v — g(v), where g€ G,v € V.

EXERCISE: Prove that the functor V — VC is left exact, and V — V

IS right exact.
O]
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The functor V — VG is exact

CLAIM: Let V be an irreducible representation of G. Then its invariants
and co-ivariants are equal O if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then Vg = VC.

COROLLARY: For any finite group G, the functor of G-invariants is
exact.

REMARK: The averaging map

gives a projection of V to VG, and the kernel of this map is the kernel of
the natural projection V.— Vg

10
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group
acting on R by automorphisms. Then the ring RG of G-invariants is finitely
generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RC is finite generated for R = C[z1,...,2n], Where R acts on
polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of V — V&

11
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Emmy Noether (1882-1935)

Emmy Noether,

illustration by Maria Castello Solbes
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Ideals in R and RC

LEMMA: Let R be a ring, G a finite group acting on R, RG the ring of
G-invariants, and I ¢ R an ideal. Then the ideal RI satisfies Avg(RI) =
Ava(R)I = RGT = I, where Av : R — RC denotes the averaging map. m

COROLLARY: Let I; C I beideals in RE. Then RI;{ C RI. m

COROLLARY 1: In these assumptions, if R is Noetherian, then RC is
also Noetherian.

Proof: Any infinite, strictly monotonous sequence Iy C I C ... of ideals in R
gives a strictly monotonous sequence RIp C RI; C ... in R. =

13
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Graded rings

DEFINITION: A graded ring is a ring A*, A* = {2, A?, with multiplication
which satisfies A - A7 ¢ A*tJ (“grading is multiplicative”). A graded ring is
called of finite type if all A are finitely dimensional.

We will usually assume that AV is the base field.

EXAMPLE: Polynomial ring C[V] = &; Sym®V is clearly graded.

14
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Graded rings (2)

Claim 1: Let A* be a graded ring of finite type. Then A* is Noetherian <
it is finitely generated.

Proof. Stepl: If A* is finitely generated, it is Noetherian by Hilbert's basis
theorem.

Step 2: Conversely, suppose that A* is Noetherian. Then the ideal @;~¢ Al C
A* is finitely generated. Let a; € A™ be generators of this ideal over A*. We
are going to show that products of a; generate A*.

Step 3: Let z € A* be a graded element of smallest degree which is not
generated by products of a;. Since a; generate the ideal @,-¢ A C A*, we can
express z as z = >, f;a;, where f; € A*. However, deg f; < deg z, hence all f;
are generated by products of a;. Then all f; are generated by products of a;.
]

A caution: In this argument, two notions of “finitely generated’ are present:
finitely generated ideals (an additive notion) and finitely generated rings over
C (multiplicative). These two notions are completely different! One is
defined for ideals (or R-modules), another for a ring over a field. Only the
name is the same (bad terminology).

15
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Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis zq1,...,2n, and C[V] =
P, Sym*V = C|z1, ..., zn] the corresponding polynomial ring. Suppose that G
acts on V by linear automorphisms. We extend this action to the symmet-
ric tensors @, Sym®V multiplicatively. This implies that G acts on C[V] by
automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants)
Let G act linearly on the polynomial ring C[V]. Then the invariant ring
C[V]€ is finitely generated.

Proof. Stepl: Since the action of G preserves the grading on C[V], the ring
C[V]¢ is graded and of finite type.

Step 2: C[V] is Noetherian, because C[V] is Noetherian, and the ring of
invariants RC is Noetherian if R is Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim
1. m
16
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Noether theorem

THEOREM: (Noether theorem)
Let R be a finitely generated ring over C, and G a finite group acting on R by
automorphisms. Then the ring RG of G-invariants is finitely generated.

Proof. Stepl: Let fq,..., fm be generators of R, and {g1,...,9r} = G. Consider
the space V. C R generated by all vectors g;f;. Clearly, V.C R is V-invariant,
and the natural homomorphism C[V] — R = C[V]/I is surjective and
G-invariant.

Step 2: The natural map C[V]¢ — R is surjective, because the functor
W — WG is exact.

Step 3: The ring (C[V]G is finitely generated by Noether theorem for polyno-
mial invariants, hence its quotient RG is also finitely generated. m

17



