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Primary ideals

DEFINITION: An ideal u ⊂ R is called primary if
√
u := {x ∈ R | xn ∈ u}

(the radical of u) is a prime ideal.

CLAIM: An ideal u is primary if and only if for any x, y ∈ R such that xy ∈ u,

one has xn ∈ u or yn ∈ u, for n sufficiently big.

Proof. Step1: Suppose that for any x, y ∈ R such that xy ∈ u, one has

xn ∈ u or yn ∈ u for n sufficiently big. xn ∈ u for n sufficiently big is equivalent

to x ∈
√
u. By definition of

√
u, for any x, y such that xy ∈

√
u, one has

xmym ∈ u for m � 0, which implies that xmn ∈ u or ymn ∈ u for n � 0.

Then xy ∈
√
u implies that x ∈

√
u or y ∈

√
u, hence

√
u is prime.

Step 2: Conversely, assume that
√
u is prime. Then for any x, y such that

xy ∈ u ⊂
√
u, one has x ∈

√
u or y ∈

√
u, because u is prime; this implies that

xm ∈
√
u or ym ∈

√
u.
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Irreducible ideals

DEFINITION: Suppose that J, and Ji are ideals in R, and J is represented

as J =
⋂
i Ji. The decomposition J =

⋂
i Ji is called non-trivial if Ji 6= J and

Ji 6⊂ Jj for all i, j. An ideal J ⊂ R is called irreducible if it does not admit a

non-trivial decomposition J =
⋂n
i=1 Ji, n > 2. An irreducible decomposition

of J is a non-trivial decomposition J =
⋂
i Ji, where all Ji are irreducible.

LEMMA: In a Noetherian ring R, every ideal admits an irreducible de-

composition.

Proof: Let R be the set of all ideals not admitting an irreducible decomposi-

tion. By absurd, assume that R is non-empty. Let J be a maximal element in

this set; it exists, because R is Noetherian. Since J is not irreducible, we can

decompose J as
⋂
i Ji, where all Ji are strictly bigger than J, hence admit an

irreducible decomposition Ji =
⋂
j Jij. Then J =

⋂
i,j Jij gives an irreducible

decomposition for J.
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Primary decomposition

LEMMA: An irreducible ideal J ⊂ R in a Noetherian ring is primary.

Proof. Step1: Replacing R by R/J, we find that it suffices to show that 0 is
primary when it is irreducible. Let xy = 0 be non-trivial zero divisors in R, and
A(xk) := {z ∈ R |zxk = 0}. Since the chain A(x) ⊂ A(x2) ⊂ ... stabilizes,
we have A(xn) = A(xn+1) for some n > 0.

Step 2: The ideals (xn) and (y) generated by xn and y satisfy (xn)∩ (y) = 0.
Indeed, each a ∈ (xn)∩(y) satisfies a ∈ A(x)∩(xn), hence a = bxn and bxn+1 =
0, giving b ∈ A(xn+1). Since A(xn) = A(xn+1), this implies a = bxn = 0.
Since 0 is irreducible, this implies xn = 0, hence 0 is primary (all zero divisors
are nilpotents).

DEFINITION: We say that an ideal J ⊂ R admits a primary decomposi-
tion if R is represented as an intersection of primary ideals.

THEOREM: (Noether-Lasker theorem)
Let R be a Noetherian ring. Then every ideal J ⊂ R admits a primary
decomposition.

Proof: Indeed, every ideal admits an irreducible decomposition, and irre-
ducible ideals are primary.
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Group representations (reminder)

DEFINITION: Representation of a group G is a homomorphism G−→GL(V ).

In this case, V is called representation space, and a representation. We

consider V as a vector space with the linear action of a group G. A morphism

of G-representations is a linear map compatible with the G-action.

DEFINITION: Irreducible representation of G is a representation having

no G-invariant subspaces. Semisimple representation is a direct sum of

irreducible ones.
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Split exact sequences

DEFINITION: An exact sequence of G-representations is a sequence

of G-representations and moprpusms ...−→A1 −→A2 −→A3 −→ ... such the

kernel of each map is the image of the previous one. A short exact sequence

of G-representations is an exact sequence of form

0−→A
i−→ B

j−→ C −→ 0. (∗)

Here “exact” means that i is injective, j surjective, and image of i is

kernel of j. A short exact sequence (*) of G-representations is split if there

exists a morphism ϕ : C −→B of representations such that ϕ ◦ j = IdC. The

map ϕ is called a section of the surjective morphism j.

REMARK: Equivalently, (*) is split when B is decomposed onto a direct

sum B = im i⊕ C0; in this case j defines an isomorphism j : C0 −→ C.

EXERCISE: Suppose that any exact sequence of G-representations splits.

Prove that any finite-dimensional representation of G is semisimple.
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Semisimplicity of representations of finite groups

PROPOSITION: Let Repk(G) be the category of representations of a finite

group G over a field k, with char(k) coprime with |G|. Then any short exact

sequence of G-representations splits.

Proof. Step1: Let 0−→A
i−→ B

j−→ C −→ 0 be an exact sequence of G-

representations. Choose a basis {zi} in C, and let {z̃i} be preimages of zi in B.

Axiom of Choice gives a way to chose these preimages even if the set {zi} is

infinite. Let ϕ : C −→B take zi to z̃i. Then B = i(A)⊕ ϕ(C). However, this

does not imply that (*) splits, because the map ϕ is not necessarily

G-invariant, and the space ϕ(C) is not necessarily a subrepresentation.

Step 2: We are going to modify ϕ such that it becomes G-invariant. Consider

the action of G on Hom(C,B) taking g ∈ G and u ∈ Hom(C,B) to gug−1 ∈
Hom(C,B); here the first “g” denotes the corresponding element in GL(B)

and the “g−1” denotes the element in GL(C). Then ϕ is a morphism of

G-representations if and only if ϕ is G-invariant.
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Semisimplicity of representations of finite groups (2)

PROPOSITION: Let Repk(G) be the category of representations of a finite
group G over a field k, with char(k) coprime with |G|. Then any short exact
sequence of G-representations splits.

Proof. Step1: Let 0−→A
i−→ B

j−→ C −→ 0 be an exact sequence of
G-representations. Consider j as a surjection of vector spaces and find a
section ϕ : C −→B (not necessarily G-invariant) using a basis in C.

Step 2: To split this exact sequence of representations, ϕ should be chosen
G-invariant.

Step 3: Since char k is coprime with |G|, the number |G| is invertible in k. Let
ϕ0 := 1

|G|
∑

g∈G g(ϕ). This is a sum of all elements in a G-orbit, hence it
is G-invariant. For any v ∈ C, one has

i(ϕ0(v)) =
1

|G|
∑
g∈G

j(g(ϕ))(g−1v) =
1

|G|
∑
g∈G

g(jϕ((g−1v))) =
1

|G|
∑
g∈G

g(g−1(v)) = v,

because j commutes with ϕ. This implies that ϕ0 is a G-invariant section
of j.

COROLLARY: Let G be a finite group and k a field, char k coprime with |G|.
Then any finite-dimensional representation of G over k is semisimple.
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Exact functors (reminder)

DEFINITION: A functor A−→ FA on the category of R-modules or vector
spaces is called left exact if any exact sequence 0−→A−→B −→ C −→ 0 is
mapped to an exact sequence

0−→ FA−→ FB −→ FC,

right exact if it is mapped to an exact sequence

FA−→ FB −→ FC −→ 0,

and exact if the sequence

0−→ FA−→ FB −→ FC −→ 0

is exact.

DEFINITION: Let G be a finite group, and V its representation. Define
the space of G-invariants V G as the space of all G-invariant vectors, and
the space of coinvariants as the quotient of V by its subspace generated
by vectors v − g(v), where g ∈ G, v ∈ V .

EXERCISE: Prove that the functor V −→ V G is left exact, and V −→ VG
is right exact.
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The functor V −→ V G is exact

CLAIM: Let V be an irreducible representation of G. Then its invariants

and co-ivariants are equal 0 if it is non-trivial, and equal V if it is trivial.

COROLLARY: Let V be a semisimple representation of G. Then VG = V G.

COROLLARY: For any finite group G, the functor of G-invariants is

exact.

REMARK: The averaging map

m−→
1

|G|
∑
g∈G

g(m)

gives a projection of V to V G, and the kernel of this map is the kernel of

the natural projection V −→ VG
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Noether theorem (scheme of the proof)

THEOREM: Let R be a finitely generated ring over C, and G a finite group

acting on R by automorphisms. Then the ring RG of G-invariants is finitely

generated.

Scheme of the proof:

1. Noetheriannes of R is used to prove that RG is Noetherian.

2. Prove that RG is finite generated for R = C[z1, ..., zn], where R acts on

polynomials of degree 1 by linear automorphisms.

3. Deduce the general case from (2) and exactness of V −→ V G
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Emmy Noether (1882-1935)

Emmy Noether,

illustration by Maŕıa Castelló Solbes
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Ideals in R and RG

LEMMA: Let R be a ring, G a finite group acting on R, RG the ring of

G-invariants, and I ⊂ RG an ideal. Then the ideal RI satisfies AvG(RI) =

AvG(R)I = RGI = I, where AvG : R−→RG denotes the averaging map.

COROLLARY: Let I1 ( I be ideals in RG. Then RI1 ( RI.

COROLLARY 1: In these assumptions, if R is Noetherian, then RG is

also Noetherian.

Proof: Any infinite, strictly monotonous sequence I0 ( I1 ( ... of ideals in RG

gives a strictly monotonous sequence RI0 ( RI1 ( ... in R.
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Graded rings

DEFINITION: A graded ring is a ring A∗, A∗ =
⊕∞

i=0 Ai, with multiplication

which satisfies Ai · Aj ⊂ Ai+j (“grading is multiplicative”). A graded ring is

called of finite type if all Ai are finitely dimensional.

We will usually assume that A0 is the base field.

EXAMPLE: Polynomial ring C[V ] =
⊕

i Symi V is clearly graded.
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Graded rings (2)

Claim 1: Let A∗ be a graded ring of finite type. Then A∗ is Noetherian ⇔
it is finitely generated.

Proof. Step1: If A∗ is finitely generated, it is Noetherian by Hilbert’s basis
theorem.

Step 2: Conversely, suppose that A∗ is Noetherian. Then the ideal
⊕

i>0 Ai ⊂
A∗ is finitely generated. Let ai ∈ Ani be generators of this ideal over A∗. We
are going to show that products of ai generate A∗.

Step 3: Let z ∈ A∗ be a graded element of smallest degree which is not
generated by products of ai. Since ai generate the ideal

⊕
i>0 Ai ⊂ A∗, we can

express z as z =
∑

i fiai, where fi ∈ A∗. However, deg fi < deg z, hence all fi
are generated by products of ai. Then all fi are generated by products of ai.

A caution: In this argument, two notions of “finitely generated” are present:
finitely generated ideals (an additive notion) and finitely generated rings over
C (multiplicative). These two notions are completely different! One is
defined for ideals (or R-modules), another for a ring over a field. Only the
name is the same (bad terminology).
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Proof of Noether theorem for polynomial invariants

DEFINITION: Let V be a vector space with basis z1, ..., zn, and C[V ] =⊕
i Symi V = C[z1, ..., zn] the corresponding polynomial ring. Suppose that G

acts on V by linear automorphisms. We extend this action to the symmet-

ric tensors
⊕

i Symi V multiplicatively. This implies that G acts on C[V ] by

automorphisms. Such action is called linear.

CLAIM: (Noether theorem for polynomial invariants)

Let G act linearly on the polynomial ring C[V ]. Then the invariant ring

C[V ]G is finitely generated.

Proof. Step1: Since the action of G preserves the grading on C[V ], the ring

C[V ]G is graded and of finite type.

Step 2: C[V ]G is Noetherian, because C[V ] is Noetherian, and the ring of

invariants RG is Noetherian if R is Noetherian (Corollary 1).

Step 3: A finite type Noetherian graded ring is finitely generated by Claim

1.
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Noether theorem

THEOREM: (Noether theorem)

Let R be a finitely generated ring over C, and G a finite group acting on R by

automorphisms. Then the ring RG of G-invariants is finitely generated.

Proof. Step1: Let f1, ..., fm be generators of R, and {g1, ..., gk} = G. Consider

the space V ⊂ R generated by all vectors gifj. Clearly, V ⊂ R is V -invariant,

and the natural homomorphism C[V ]−→R = C[V ]/I is surjective and

G-invariant.

Step 2: The natural map C[V ]G −→RG is surjective, because the functor

W −→WG is exact.

Step 3: The ring C[V ]G is finitely generated by Noether theorem for polyno-

mial invariants, hence its quotient RG is also finitely generated.
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