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Tensor product

DEFINITION: Let R be a ring, and M, M’ modules over R. We denote by
M ®p M' an R-module generated by symbols m®@m/, m € M, m' € M’, modulo
relations

r(me@m’) = (rm) @m' =m (rm/),
(m+m)@m =mem'+mim/,
m®@ (m'+mi) =mem' +mem]

for all r € R,m,m1 € M,m/,m7] € M'. Such an R-module is called the tensor
product of M and M’ over R.

REMARK: Suppose that M is generated over R by a set {m; € M}, and M’
generated by {m} € M'}. Then M ®grM'is generated by the set {m;®m/}.

EXERCISE: Find two non-zero R-modules A, B such that AQpr B =0

when
a. R=2%7.
b. R=C°M the ring of smooth functions on a manifold.
c. R = CJ[t] (polynomial ring).
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Hermann Grassmann (1809 - 1877)

Lﬁf/f“h]‘}’lr”’ﬂh/

Hermann Grassmann, Die lineale Ausdehnungslehre, ein neuer Zweig der Mathematik
(Linear extension theory, a new branch of mathematics), 1844.

... T hirty years after the publication of Al the publisher wrote to Grassmann: " Your book Die
Ausdehnungslehre has been out of print for some time. Since your work hardly sold at all,
roughly 600 copies were used in 1864 as waste paper and the remaining few odd copies have

now been sold out, with the exception of the one copy in our library”... (Prasolov, Viktor
V., Problems and Theorems in Linear Algebra.)
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Hassler Whitney (1907 - 1989)

Hassler Whitney, 1924

Whitney, Hassler. Tensor products of Abelian groups. Duke Mathematical

Journal 4 (1938), no. 3, 495—-528.
4



Commutative Algebra, lecture 7 M. Verbitsky

Hassler Whitney (1907 - 1989)

B L E RS R R

There was a further block to my progress. I had to handle tensors; but how
could I when I was not permitted to see them, being only allowed to learn
about their changing costumes under changes of coordinates? [ had somehow
to grab the rascals, and look straight at them. I could look ar a pair of vectors,
“multiplied™ u Vv v. And here, I needed u v v = —v vV 4. So I managed to
construct the rest of the beasts, in “tensor products of abelian groups.” (Duke
Math Journal, 1938). Before long I noticed that neat form, using less space,
was the sine qua non of mathematical writing: the CORRECT definition of
the tensor product of two vector spaces must use the linear functionals over
the linear functionals over one of them. So this is the way in which later
generations learned them.

Whitney’s “Collected papers”’, vol. 1
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Nicolas Bourbaki

DEerINITION 1. The tensor product of the right A-module B and the left A-module F,
denoted by E ? ForE @, F (or simply E ® F if no confusion is to be feared)
is the quotient Z-module C/D (the quotient of the Z-module C of formal linear
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combinations of elements of E x F with coeflicients in Z, by the submodule
D generated by the elements of one of the types (2)). For x € E and y € F, the
element of E @4 F which 15 the canonical image of the element (x,y) of G = ZE*D
15 denoted by x ® y and called the tensor product of x and y.

Nicolas Bourbaki, Algebra, Chapter 2, 1942

M. Verbitsky
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Nicolas Bourbaki
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Nicolas Bourbaki, Algebra, Chapter 2, 1942
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Bilinear maps

DEFINITION: Let Mq,M>, M be modules over a ring R. Bilinear map
w(Mq, Ms) -2 M is a map satisfying ¢o(rm,m') = o(m,rm’) = ro(m,m’),
go(m—l—ml,m’) — go(m,m’) + Sp(mlam/)r Sp(mam,—i_m/]_) — go(m,m/) + Sp(m7m,]_)

THEOREM: (Universal property of the tensor product)
For any bilinear map B : M1 x M> — M there exists a unique homomor-
phism b: M7 ® M> — M, making the following diagram commutative:

B
M1 X Moy —— M1 @ Mo

e

b

M

REMARK: If R is the field &k, R-modules are vector spaces, and the previous
theorem proves that Bil(Mq x M»>, k) = (M1 ® M>)*. For finite-dimensional
M;, it gives M1 ® My = (M1 ® M»>)** = Bil(M1 X M»>, k)*.
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Universal property of the tensor product and categories

DEFINITION: Initial object of a category C is an object X € O6(C) such
that for any Y € ©O6(C) there exists a unique morphism X — Y.

EXAMPLE: Zero space is an initial object in the category of vector spaces.
The ring Z is an initial object in the category of rings with unit.

EXERCISE: Prove that initial object is unique.

DEFINITION: Let Mjy,M»> are R-modules, and ¢ the following category.
Objects of C are pairs (R-module M, bilinear map My x My — M). Mor-
phisms of ¢ are homomorphisms M 2y M making the following diagram

commutative:
M1 X M2 — M

ol |+

M x My — M’
CLAIM: (Universal property of the tensor product)
Tensor product My, x M- is the initial object in C.

COROLLARY: Tensor product is uniquely determined by the universal
property.

Indeed, the initial object is unique.
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The internal #om and exact functors

DEFINITION: Let M, M’ be R-modules. Consider the group Homp(M, M")
of R-module homomorphisms. We consider Homp(M, M’) as an R-module,
using ro(m) := p(rm). This R-module is called internal Hom functor, de-
noted #tom.

Claim1l: Let0 — M — M>, — M3z — 0 be an exact sequence of R-modules.
Then the natural sequences

0 — Homp(M3, N) —> Homp(Mo, N) — Hompr(Mi,N)
and
0 — Homp(N,M1) — Homp(N, My) — Homp(N, M3)

are exact, for any R-module M.

Proof: Let’'s prove exactness of the first sequence. Exactnhess in the term
Homp(M3,N) is clear. If v € #Homgr(Mo,N) is mapped to 0 in projection to
Homp(M1,N), this means that v|j,;; = 0, giving a morphism © € #ompr(Msz, N),
which is mapped to v. Exactness of the second sequence is left as an

exercise. m
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The internal #om and tensor product

REMARK: Universal property of @ implies

Ftomp(My @ Mo, M) = Fompg(My, Homp(Mpz, M)).

Indeed, the group #Homp(Mq,Homr(M>,M)) is identified with the group
of bilinear maps My x My — M.

COROLLARY: Let 0O — My — M, — M3 — 0 be an exact sequence of
R-modules. Then for any R-modules N, N/, the sequence

0 — Homp(M3® N',N) — FHomp(Mo> @ N',N) — Homp(M; @ N',N)

IS exact.

Proof: Using Claim 1 twice, we obtain an exact sequence

0 — Homp(N',FHomp(Mz, N))

— Fomp(N',#Homp(Mo, N)) — FHomp(N',#Homp(Ms, N)).
Then we use an isomorphism #Homp(A ®p B,M) = Homgr(A,Homgr(B,M))
proven above. =

11



Commutative Algebra, lecture 7 M. Verbitsky

Functor #om, part 2

REMARK: Exactness of the sequence M{ — M, — M3 — 0 implies ex-
actness of 0 — #Homp(M3, N) — FHomp(Mo, N) — Homp(M1,N). We are
going to prove the converse: exactness of the second sequence (for all
N) implies exactness of the first one.

DEFINITION: A complex of R-modules is a sequence M- ﬂ) Mo 2

d
M3 —3> ... such that diOdi—|—1 = U.

LEMMA: Consider a complex E* of R-modules My LA Mo» LN Mz — 0
such that 0 —s #omp(Ms, N) % Fomp(Ma, N) 2% Fomp(Mq, N) is exact
for all N. Then E* is also exact.

Proof: Injectivity of pn implies surjectivity of p, if we put N = Ms3/imp.

Exactness of the second sequence in term #Homgr(Mo, N) implies exactness of
E in term My when N = My/imu. =
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Exactness of the tensor product

THEOREM: Let M1 — M, — M3 — 0 be an exact sequence of R-modules.
Then the sequence

M1®RM—>M2®RM—>M3®RM—>O (>I<)

IS exact.

Proof: Using the universal property of tensor product, we have shown that

0 — Homp(M3Q M,N) — Homp(M>® M,N) — Homp(M1 & M, N)

is exact for any N. Aplying the previous lemma, we obtain that (*) is also
exact. m

COROLLARY: Let I C R be an ideal in a ring. Then M@y (R/I) = M/IM.

Proof: Apply the functor M to the exact sequence0 — I — R— R/I — 0.
We obtain IM — M — (R/I) g M — 0. =
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Tensor product: examples
EXERCISE: Prove that Q®y Z/27 = 0.

REMARK: Let Z -25 Z be a multiplication by 2. Then the sequence

7 @7 (Z)27) 25 7 @y (Z)2Z) — (Z)2Z) @7 (Z/2Z) — 0

obtained from 0 —7Z —%» 7 — 7./27Z — 0 by tensoring with ®4(Z/27) is
not left exact.
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