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Commutative Algebra, lecture 8 M. Verbitsky

Tensor product (reminder)

DEFINITION: Let R be a ring, and M,M ′ modules over R. We denote by

M ⊗RM ′ an R-module generated by symbols m⊗m′, m ∈M,m′ ∈M ′, modulo

relations

r(m⊗m′) = (rm)⊗m′ = m⊗ (rm′),

(m+m1)⊗m′ = m⊗m′+m1 ⊗m′,
m⊗ (m′+m′1) = m⊗m′+m⊗m′1 for all r ∈ R,m,m1 ∈M,m′,m′1 ∈M

′. Such

an R-module is called the tensor product of M and M ′ over R.

REMARK: Suppose that M is generated over R by a set {mi ∈M}, and M ′

generated by {m′j ∈M
′}. Then M ⊗RM ′ is generated by {mi ⊗m′j}.

THEOREM: (Universal property of the tensor product)
For any bilinear map B : M1 ×M2 −→M there exists a unique homomor-
phism b : M1 ⊗M2 −→M, making the following diagram commutative:

M1 ×M2
B
-M1 ⊗M2

M

b

?

τ

-

2



Commutative Algebra, lecture 8 M. Verbitsky

Exactness of the tensor product (reminder)

THEOREM: Let M1 −→M2 −→M3 −→ 0 be an exact sequence of R-modules.

Then the sequence

M1 ⊗RM −→M2 ⊗RM −→M3 ⊗RM −→ 0 (∗)

is exact.

COROLLARY: Let I ⊂ R be an ideal in a ring. Then M⊗R (R/I) = M/IM.

Proof: Apply the functor ⊗RM to the exact sequence 0−→ I −→R−→R/I −→ 0.

We obtain IM −→M −→ (R/I)⊗RM −→ 0.
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Tensor product of rings

DEFINITION: Let A,B be rings, C −→A, C −→B homomorphisms. Con-
sider A and B as C-modules, and let A⊗C B be their tensor product. Define
the ring multiplication on A ⊗C B as a ⊗ b · a′ ⊗ b′ = aa′ ⊗ bb′. This defines
tensor product of rings.

EXAMPLE: C[t1, ..., tk] ⊗C C[z1, ..., zn] = C[t1, ..., tk, z1, ..., zn]. Indeed, if we
denote by Cd[t1, ..., tk] the space of polynomials of degree d, then Cd[t1, ..., tk]⊗C
Cd′[z1, ..., zn] is polynomials of degree d in {ti} and d′ in {zi}.

EXAMPLE: For any homomorphism ϕ : C−→A, the ring A⊗C (C/I) is a
quotient of A by the ideal A ·ϕ(I). This follows from M ⊗R (R/I) = M/IM .

PROPOSITION: (associativity of ⊗)
Let C −→A,C −→B,C′ −→B,C′ −→D be ring homomorphisms. Then (A⊗C
B)⊗C′ D = A⊗C (B ⊗C′ D).

Proof: Universal property of ⊗ implies that Hom((A ⊗C B) ⊗C′ D,M) =
Hom(A ⊗C (B ⊗C′ D),M) is the space of polylinear maps A ⊗ B ⊗ D −→M

satisfying ϕ(ca, b, d) = ϕ(a, cb, d) and ϕ(a, c′b, d) = ϕ(a, b, c′d). However, an ob-
ject X of category is defined by the functor Hom(X, ·) uniquely (prove it).
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Tensor product of rings and preimage of a point

DEFINITION: Recall that the spectrum of a finitely generated ring R is

the corresponding algebraic variety, denoted by Spec(R)

PROPOSITION: Let f : X −→ Y be a morphism of affine varieties, f∗ :

OY −→OX the corresponding ring homomorphism, y ∈ Y a point, and my its

maximal ideal. Denote by R1 the quotient of R := OX ⊗OY (OY /my) by its

nilradical. Then Spec(R1) = f−1(y).

Proof. Step1: If α ∈ OY vanishes in y, f∗(α) vanishes in all points of f−1(y).

This implies that the set VI of common zeros of the ideal I := OX · f∗my
contains f−1(y).

Step 2: If f(x) 6= y, take a function β ∈ OY vanishing in y and non-zero in

f(x). Since ϕ∗(β)(x) 6= 0 and β(y) = 0, this gives x /∈ VI. We proved that

the set of common zeros of the ideal I = OX · f∗my is equal to f−1(y).

Step 3: Now, strong Nullstellensatz implies that Of−1(y) is a quotient of

R = OX/I by nilradical.
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Commutative Algebra, lecture 8 M. Verbitsky

Tensor product of rings and product of varieties

LEMMA: A⊗C B ⊗B B′ = A⊗C B′.
Proof: Follows from associativity of tensor product and B ⊗B B′ = B′.

LEMMA: A⊗C (B/I) = A⊗CB/(1⊗ I), where 1⊗ I denotes the ideal A⊗C I.

Proof: Using M ⊗R (R/I) = M/IM , we obtain

A⊗C (B/I) = (A⊗C B)⊗B (B/I) = (A⊗C B)/(1⊗ I)

Lemma 1: Let A,B be finitely generated rings without nilpotents, R :=

A⊗C B, and N ⊂ R nilradical. Then Spec(R/N) = Spec(A)× Spec(B).

Proof. Step1: Let A = C[t1, ..., tn]/I,B = C[z1, ..., zk]/J. Then C[t1, ..., tn]⊗C
C[z1, ..., zk] = C[t1, ..., tn, z1, ..., zk]. Applying the previous lemma twice, we

obtain A⊗CB = C[t1, ..., tn, z1, ..., zk]/(I + J). Here I + J means I ⊗ 1⊕ 1⊗ J.

Step 2: The set VI+J of common zeros of I + J is Spec(A) × Spec(B) ⊂
Cn × Ck.

Step 3: Hilbert Nullstellensatz implies Spec(R/N) = VI+J = Spec(A) ×
Spec(B).
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Tensor product of rings and product of varieties (2)

LEMMA: For any finitely-generated ring A over C, intersection P of all its

maximal ideals is its nilradical.

Proof: Let A = C[t1, ..., tn]/I, and Z = VI the set of common zeros. Strond

Nullstellensatz implies that f ∈ A is nilpotent if and only if f = 0 in each

point of Z. This is equivalent to f ∈ P .

REMARK: Let A,B be finite generated rings over C, B −→A a homomor-

phism, and m ⊂ B a maximal ideal. Then the ring A ⊗B (B/m) can contain

nilpotents, even if A and B have no zero divisors.

EXERCISE: Give an example of such rings A,B.

THEOREM: Let A,B be finitely-generated, reduced rings over C, and R :=

A⊗C B their product. Then R is reduced (that is, has no nilpotents).

Proof: see the next slide.

COROLLARY: Spec(A)× Spec(B) = Spec(A⊗C B).
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Tensor product of rings and product of varieties (2)

THEOREM: Let A,B be finitely-generated, reduced rings over C, and R :=

A⊗C B their product. Then R is reduced.

Proof. Step1: By the previous lemma, it suffices to show that the inter-

section P of maximal ideals of R is 0.

Step 2: Let X,Y denote the varieties Spec(A),Spec(B). Lemma 1 implies

that maximal ideals of R are points of X × Y .

Step 3: Every such ideal is given as mx ⊗OY + OX ⊗ my, where x ∈ X, y ∈ Y .

Then

P =
⋂

X×Y
(mx⊗OY +OX⊗my) =

⋂
Y

⋂
X

mx ⊗OY

 + OX ⊗ my

 =
⋂
Y

OX⊗my = 0.

This follows from
⋂
Y 1⊗ my =

⋂
X mx ⊗ 1 = 0 since A and B are reduced.
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Preimage and diagonal

Claim 2: Let f : X −→ Y be a morphism of algebraic varieties, f∗ : OY −→OX
the corresponding ring homomorphism, Z ⊂ Y a subvariety, and IZ its ideal.
Denote by R1 the quotient of a ring R := OX ⊗OY (OY /IZ) = OX/f

∗(IZ) by
its nilradical. Then Spec(R1) = f−1(Z).

Proof: Clearly, the set of common zeros of the ideal J := f∗(IZ) contains
f−1(Z). On the other hand, for any point x ∈ X such that f(x) /∈ Z there
exist a function g ∈ J such that g(x) 6= 0. Therefore, f−1(Z) = VJ, and
strong Nullstellensatz implies that Of−1(Z) = R1.

Claim 3: Let M be an algebraic variety, ∆ ⊂ M × M the diagonal, and
I ⊂ OM ⊗C OM the ideal generated by r ⊗ 1− 1⊗ r for all r ∈ OM . Then O∆
is OM ⊗C OM/I.

Proof. Step1: By definition of the tensor product, OM ⊗C OM/I = OM ⊗OM
OM = OM , hence it is reduced. If we prove that ∆ = VI, the statement of
the claim would follow from strong Nullstellensatz.

Step 2: Clearly, ∆ ⊂ VI. To prove the converse, let (m,m′) ∈ M ×M be
a point not on diagonal, and f ∈ OM a function which satisfies f(m) =
0, f(m′) 6= 0. Then f ⊗ 1− 1⊗ f is non-zero on (m,m′).
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Commutative Algebra, lecture 8 M. Verbitsky

Fibered product

DEFINITION: Let X
πX−→ M,Y

πY−→ M be maps of sets. Fibered product

X ×M Y is the set of all pairs (x, y) ∈ X × Y such that πX(x) = πY (y).

CLAIM: Let X
πX−→ M,Y

πY−→ M be morphism of algebraic varieties, R :=

OX ⊗OM
OY , and R1 the quotient of R by its nilradical. Then Spec(R1) =

X ×M Y .

Proof: Let I be the ideal of diagonal in OM ⊗C OM . Since I is generated by

r ⊗ 1− 1⊗ r (Claim 3), R = OX ⊗C OY /(πX × πY )∗(I). Applying Claim 2, we

obtain that Spec(R1) = (πX × πY )−1(∆).

10
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Initial and terminal objects

DEFINITION: Commutative diagram in category C is given by the follow-

ing data. There is a directed graph (graph with arrows). For each vertex of

this graph we have an object of category C, and each arrow corresponds to a

morphism of the associated objects. These morphisms are compatible, in

the following way. Whenever there exist two ways of going from one vertex

to another, the compositions of the corresponding arrows are equal.

DEFINITION: An initial object of a category is an object I ∈ Ob(C) such

that Mor(I,X) is always a set of one element. A terminal object is T ∈ Ob(C)

such that Mor(X,T ) is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique.
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Limits and colimits of diagrams

DEFINITION: Let S = {Xi, ϕij} be a commutative diagram in C, and ~CS be

a category of pairs (object X in C, morphisms ψi : X −→Xi, defined for all

Xi) making the diagram formed by (X,Xi, ψi, ϕij) commutative.

X

X1
ϕ12 -

ψ
1

-

X2

ψ
3

-

X3

ϕ13

?

ψ
2

-

�

ϕ23

X ′
Ψ

- X

X1 ϕ12 -

ψ
1

-

ψ ′
1

-

X2

ψ
2

-

ψ ′
2

-

X3

ϕ13

?

ψ
3

-

ψ ′
3

-
�

ϕ23

Morphisms Mor({X,ψi}, {X ′, ψ′i}), are morphisms Ψ ∈Mor(X,X ′), making the

diagram formed by (X,X ′, ψi, ψ′i, ϕij) commutative. The terminal object in

this category is called limit, or inverse limit of the diagram S.

DEFINITION: Colimit, or direct limit is obtained from the previous defi-

nition by inverting all arrows and replacing “terminal” by “initial”.
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Products and coproducts

EXAMPLE: Let S be a diagram with two vertices X1 and X2 and no arrows.

The inverse limit of S is called the product of X1 and X2, and the direct

limit the coproduct.

EXAMPLE: Products in the category of sets, vector spaces and topological

spaces are the usual products of sets, vector spaces and topological spaces

(check this).

EXAMPLE: Coproduct in the category of groups is called free product, or

amalgamated product. Coproduct of the group Z with itself is called free

group. Coproduct in the category of vector spaces is also the usual product

of vector spaces. Coproduct in the category of sets is disjoint union.
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Products and coproducts (2)

EXERCISE: Prove that the product of algebraic varieties is their product

in this category.

EXERCISE: Prove that coproduct of rings over C in the category of

rings is their tensor product.

EXERCISE: Prove that coproduct of reduced rings over C in the cat-

egory of reduced rings is the quotient of their tensor product by the

nilradical.

Since the category of algebraic varieties is equivalent to the category of finitely

generated reduced rings, this gives another proof of the theorem.

THEOREM: Let A,B be finitely generated reduced rings over C. Then

Spec(A⊗C B/I) = Spec(A)× Spec(B), where I is nilradical.

14



Commutative Algebra, lecture 8 M. Verbitsky

Fibered product

DEFINITION: Consider the following diagram:

A B

C
�-

Its limit is called fibered product of A and B over C. Colimit of the diagram

C

A
�

B
-

is called coproduct of A and B over C.

EXERCISE: Prove that the fibered product of algebraic varieties is the
same as their product in the category of algebraic varieties.

EXERCISE: Prove that the coproduct of rings A and B over C is A⊗CB.
Prove that the coproduct of reduced rings A and B over C in the category
of reduced rings is A⊗C B/I, where I is nilradical.

Using strong Nullstellensatz again, we obtain
CLAIM: Let X

πX−→ M,Y
πY−→ M be morphisms of affine varieties, R :=

OX ⊗OM
OY , and R1 the quotient of R by its nilradical. Then Spec(R1) =

X ×M Y .
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