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Natural transformation of functors

DEFINITION: Let F,G : C1 −→ C2 be functors on categories. A natural

transformation of functors is a morphism ΨX : F (X)−→G(X) such that

for any ϕ ∈Mor(X,Y ), one has F (ϕ) ◦ΨY = ΨX ◦G(ϕ).

REMARK: The condition F (ϕ) ◦ΨY = ΨX ◦G(ϕ) is expressed by a com-

mutative diagram

F (X)
F (ϕ)−−−→ F (Y )

ΨX

y yΨY

G(X)
G(ϕ)−−−→ G(Y )

REMARK: Equivalence of functors is a special case of a natural trans-

formation of functors.
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Representable functors and natural transformations

DEFINITION: Consider the functor hA : C −→ Sets taking X ∈ Ob(C) to

Mor(A,X). We say that hA is represented by an object A ∈ Ob(C).

CLAIM: Let Φ : hA −→ F be a natural transformation of functors from C to

sets. Then Φ is uniquely determined by the element Φ(IdA) ∈ F (A).

Proof: For any λ ∈Mor(A,B), we have a commutative diagram

hA(A) = Mor(A,A)
f 7→f◦λ−−−−−→ hA(B) = Mor(A,B)

ΦA

y yΦB

F (A)
F (λ)−−−→ F (B)

Suppose that the top arrow takes IdA to λ. Commutativity of this diagram im-

plies that ΦB(λ) = F (λ)(ΦA(IdA)), hence the map ΦB : Mor(A,B)−→ F (B)

is uniquely determined by ΦA(IdA) ∈Mor(A,A).
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Yoneda lemma

This brings the following useful result.

THEOREM: (Yoneda lemma)

Let C be a category, A ∈ Ob(C), and hA : C −→ Sets the functor represented

by A. Consider a functor F : C −→ Sets. Then the set of natural transfor-

mations hA −→ F is in bijective correspondence with F (A).

The functors F : C −→ Sets form a category. Objects of this category are

functors F : C −→ Sets, morphisms are natural transforms. Yoneda lemma

immediately implies that Mor(hA, hB) = Mor(B,A). We obtained the fol-

lowing statement.

CLAIM: Let C be a category, and F the category of representable func-

tors F : C −→ Sets. Then the contravariant functor A−→ hA defines an

equivalence of categories C −→F◦.

REMARK: In particular, an object A of category C representing a given

functor hA : C −→ Sets is uniquely up to an isomorphism determined by

this functor.
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Yoneda lemma (2)

REMARK: The same is true for contravariant functors: a category C is

equivalent to the category G of contravariant functors C◦ −→ Sets rep-

resented by h◦A(X) = Mor(X,A).

Yoneda Nobuo, (1930-1996)
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Initial and terminal objects

DEFINITION: Fix a directed graph (graph with arrows). Suppose that for

each vertex of this graph we have an object of category C, and each arrow

corresponds to a morphism of the associated objects. These data is called

a diagram in the category C. It is called commutative if whenever there

exist two ways of going from one vertex to another along directed arrows,

the compositions of the corresponding arrows are equal.

DEFINITION: An initial object of a category is an object I ∈ Ob(C) such

that Mor(I,X) is always a set of one element. A terminal object is T ∈ Ob(C)

such that Mor(X,T ) is always a set of one element.

EXERCISE: Prove that the initial and the terminal object is unique.
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Limits and colimits of diagrams

DEFINITION: Let S = {Xi, ϕij} be a commutative diagram in C, and ~CS be
a category of pairs (object X in C, morphisms ψi : X −→Xi, defined for all
Xi) making the diagram formed by (X,Xi, ψi, ϕij) commutative.

X

X1
ϕ12 -

ψ
1

-

X2

ψ
3

-

X3

ϕ13

?

ψ
2

-

�

ϕ23

X ′
Ψ

- X

X1 ϕ12 -

ψ
1

-

ψ ′
1

-

X2

ψ
2

-

ψ ′
2

-

X3

ϕ13

?

ψ
3

-

ψ ′
3

-
�

ϕ23

Morphisms Mor({X,ψi}, {X ′, ψ′i}), are morphisms Ψ ∈Mor(X,X ′), making the

diagram formed by (X,X ′, ψi, ψ′i, ϕij) commutative. The terminal object in

this category is called limit, or inverse limit of the diagram S.

DEFINITION: Colimit, or direct limit is obtained from the previous defi-

nition by inverting all arrows and replacing “terminal” by “initial”.
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Products and coproducts

EXERCISE: Prove that the limit of S = {Xi, ϕij} is an object of C rep-
resenting the contravariant functor C◦ −→ Sets which takes X ∈ Ob(C)
to the set of all morphisms ψi : X −→Xi making the above diagram
commutative.

EXAMPLE: Let S be a diagram with two vertices X1 and X2 and no arrows.
The inverse limit of S is called the product of X1 and X2, and the direct
limit the coproduct.

EXERCISE: Prove that the product X1×X2 is an object which represents
the functor A−→ Mor(A,X1) × Mor(A,X2) and coproduct is an object
which represents the functor A−→ Mor(X1, A)×Mor(X2, A).

EXAMPLE: Products in the category of sets, vector spaces and topological
spaces are the usual products of sets, vector spaces and topological spaces
(check this).

EXAMPLE: Coproduct in the category of groups is called free product, or
amalgamated product. Coproduct of the group Z with itself is called the
free group. Coproduct in the category of vector spaces is also the usual
product of vector spaces. Coproduct in the category of sets is disjoint union.
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Preimage and diagonal (reminder)

Claim 2: Let f : X −→ Y be a morphism of algebraic varieties, f∗ : OY −→OX
the corresponding ring homomorphism, Z ⊂ Y a subvariety, and IZ its ideal.
Denote by R1 the quotient of a ring R := OX ⊗OY (OY /IZ) = OX/f

∗(IZ) by
its nilradical. Then Spec(R1) = f−1(Z).

Proof: Clearly, the set of common zeros of the ideal J := f∗(IZ) contains
f−1(Z). On the other hand, for any point x ∈ X such that f(x) /∈ Z there
exist a function g ∈ J such that g(x) 6= 0. Therefore, f−1(Z) = VJ, and
strong Nullstellensatz implies that Of−1(Z) = R1.

Claim 3: Let M be an algebraic variety, ∆ ⊂ M × M the diagonal, and
I ⊂ OM ⊗C OM the ideal generated by r ⊗ 1− 1⊗ r for all r ∈ OM . Then O∆
is OM ⊗C OM/I.

Proof. Step1: By definition of the tensor product, OM ⊗C OM/I = OM ⊗OM
OM = OM , hence it is reduced. If we prove that ∆ = VI, the statement of
the claim would follow from strong Nullstellensatz.

Step 2: Clearly, ∆ ⊂ VI. To prove the converse, let (m,m′) ∈ M ×M be
a point not on diagonal, and f ∈ OM a function which satisfies f(m) =
0, f(m′) 6= 0. Then f ⊗ 1− 1⊗ f is non-zero on (m,m′).
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Fibered product (reminder)

DEFINITION: Let X
πX−→ M,Y

πY−→ M be maps of sets. Fibered product

X ×M Y is the set of all pairs (x, y) ∈ X × Y such that πX(x) = πY (y).

CLAIM: Let X
πX−→ M,Y

πY−→ M be morphism of algebraic varieties, R :=

OX ⊗OM
OY , and R1 the quotient of R by its nilradical. Then Spec(R1) =

X ×M Y .

Proof: Let I be the ideal of diagonal in OM ⊗C OM . Since I is generated by

r ⊗ 1− 1⊗ r (Claim 3), R = OX ⊗C OY /(πX × πY )∗(I). Applying Claim 2, we

obtain that Spec(R1) = (πX × πY )−1(∆).
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Products and coproducts (2)

EXERCISE: Prove that the product of algebraic varieties is their product

in this category.

EXERCISE: Prove that coproduct of rings over C in the category of

rings is their tensor product.

EXERCISE: Prove that coproduct of reduced rings over C in the cat-

egory of reduced rings is the quotient of their tensor product by the

nilradical.

Since the category of algebraic varieties is equivalent to the category of finitely

generated reduced rings, this gives another proof of the theorem.

THEOREM: Let A,B be finitely generated reduced rings over C. Then

Spec(A⊗C B/I) = Spec(A)× Spec(B), where I is nilradical.
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Fibered product in categories

DEFINITION: Consider the following diagram:

A B

C
�-

Its limit is called fibered product of A and B over C. Colimit of the diagram

C

A
�

B
-

is called coproduct of A and B over C.

EXERCISE: Prove that the fibered product of algebraic varieties is the
same as their product in the category of algebraic varieties.

EXERCISE: Prove that the coproduct of rings A and B over C is A⊗CB.
Prove that the coproduct of reduced rings A and B over C in the category
of reduced rings is A⊗C B/I, where I is nilradical.

Using strong Nullstellensatz again, we obtain
CLAIM: Let X

πX−→ M,Y
πY−→ M be morphisms of affine varieties, R :=

OX ⊗OM
OY , and R1 the quotient of R by its nilradical. Then Spec(R1) =

X ×M Y .
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