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Field extensions

DEFINITION: An extension of a field k is a field K containing k. We
write “K is an extension of k" as [K : k].

DEFINITION: Let £ C K be a field contained in a field. In this case, we say
that k is a subfield of K, and K is extension of k. An element z € K is called
algebraic over K if x is a root of a non-zero polynomial with coefficients in
k. An element which is not algebraic is called transcendental.

THEOREM: A sum and a product of algebraic numbers is algebraic. m

DEFINITION: A field extension K D k is called algebraic if all elements of
K are algebraic over k. A field k is called algebraically closed if all algebraic
extensions of k are trivial.

EXAMPLE: The field C is algebraically closed.

DEFINITION: In this lecture, k-algebra is a ring containg a field k, not
necessarily with unity. All k-algebras are tacitly assumed commutative.
Homomorphisms of k-algebras are k-linear map compatible with the mul-
tiplication.
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Minimal polynomials

CLAIM: Let K be a finite-dimensional k-algebra with unity and without zero
divisors. Then K is a field.

Proof: An injective endomorphism of finite-dimensional spaces is surjective.
T herefore, for each = € K, there exists y e K suchthat zy=1. =

DEFINITION: Let v be an element of a finite-dimensional k-algebra R, and
P(t) = t" 4+ an_lt”_l + ... a polynomial of smallest possible degree with
coefficients in k satisfying P(v) = 0. This polynomial is called the minimal
polynomial of v € R.

CLAIM: Let v € R be an element of finite-dimensional algebra R over k, and
P(t) its minimal polynomial. Then the subalgebra R, C R generated by v
Is isomorphic to k[t]/(P).

Proof: By definition, R, is a quotient of k[t] by an ideal I of all polynomials
R(t) such that R(v) = 0. Since k[t] is a principal ideal ring (home assignment
5), I = (Q) for some polynomial Q(t) satisfying Q(v) = 0. Then (@ is the

minimal polynomial. =
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Irreducible polynomials

THEOREM: The polynomial ring k[t] is factorial (admits the unique prime
decomposition).

Proof: See assignment 5. =

DEFINITION: A polynomial P(t) € k[t] is irreducible if it is not a product
of polynomials Py, P> € k[t] of positive degree.

PROPOSITION: Let (P) C k[t] be a principal ideal generated by the poly-
nomial P(t). Then the polynomial P(t) is irreducible if and only if the
quotient ring k[t]/(P) is a field.

Proof. Stepl: The polynomial P is irreducible if and only if (P) is prime.
This follows because k[t] is a factorial ring.

Step 2: The quotient ring k[t]/(P) is finite-dimensional over k. Then, it is a
field if and only if it has no zero divisors. m
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Primitive extensions

DEFINITION: Let P(t) € k[t] be an irreducible polynomial. A field k[t]/(P) is
called an extension of k obtained by adding a root of P(t). The extension

[k[t]/(P) : k] is called primitive.

CLAIM: Let [K : k] be a finite extension. Then K can be obtained from
k by a finite chain of primitive extensions. In other words, there exists
a sequence of intermediate extensions [K = K, : K,,_1 : K,,_>: ... Ko = k]
such that each [K; : K;_1] is primitive. =
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Artinian algebras over a field

DEFINITION: A commutative, associative k-algebra R is called Artinian
algebra if it is finite-dimensional as a vector space over k. Artinian algebra
is called semisimple if it has no non-zero nilpotents.

DEFINITION: Let Rq,..., Ry, be k-algebras. Consider their direct sum &R,
with the natural (term by term) multiplication and addition. This algebra is
called direct sum of R;, and denoted &R,.

Today we are going to prove the following theorem.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct
sum of fields, and this decomposition is uniquely defined.
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Idempotents

DEFINITION: Let v € R be an element of an algebra R satisfying v = .
Then v is called idempotent.

REMARK: A product of two idemponents is clearly an idempotent.
If e is an idemponent, then 1 — e is also an idempotent: (1 —¢e)? =
1—2€+€2:1—€.

COROLLARY: For each idemponent e € R, one has e(1—e) = 0. Therefore,
each idemponent e € A defines a decomposition of A into a direct sum:
A=eAD (1 —-¢e)A.



Commutative Algebra, lecture 10 M. Verbitsky

All Artinian algebras contain idempotents

THEOREM: Let A be an Artinian k-algebra without nilpotents. Then A
contains an idempotent.

Proof. Stepl: Since A is finite-dimensional, every decreasing chain of ideals
stabilizes. Therefore, A contains an ideal I C A which has no non-zero
proper ideals. We shall consider I as a sub-algebra in A.

Step 2: Since A has no nilpotents, for each non-zero z € I we have 22 = 0.
Since I is minimal, we have zI = 1.

Step 3: Since I is finite-dimensional, all elements of I are invertible as
endomorphisms of /.

Step 4: Since I is finite-dimensional, the elements z,22,23,... € End I are
linearly dependent, which gives a polynomial relation P(z) = 0. If this
polynomial has zero constant term, we divide it by z, and obtain another
polynomial with the same property. Using induction, we obtain a polyno-
mial relation P(z) = 0 with non-zero constant term. This gives a relation
Id; = az + bz2 4+ c2z3 + ... in the ring End.(I), with a,b,c, ... € k.

Step 5: The element U := az + b22 4+ c23 4+ ... € I satisfies Uz = z for any
x € I. Therefore, U is an idempotent in A, and unity in /. m
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Structure theorem for semisimple Artinian algebras

REMARK: Step 5 proves the following useful statement. Let I be a commu-
tative Artinian algebra without zero divisors. Then I containes unit, that
IS, I is a field.

COROLLARY: Let A be a semisimple Artinian algebra, that is, a finite-
dimensional commutative k-algebra without nilpotents. Then A is a direct
sum of fields

Proof: Let I C A be a non-trivial ideal. As shown above, I contains a non-
zero idempotent a. Then a and b := 1 — a idempotents satisfying ab = O,
a+ b= 1. This gives a direct sum decomposition A = adA P (1 —a)A.
Using induction in dim A, we may assume already that aA and (1 —a)A are
direct sum of fields. =
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Structure theorem for semisimple Artinian algebras: uniqueness of de-
composition

LEMMA: Let A be a direct sum of fields, A = &; k;. Then the decompo-
sition A = @, k; is defined uniquely, up to permutation of summands.

Proof: Let A = @]_,k = D, kg and ai,...,an, b1,...,bp be the corre-
sponding idempotents. Then the pairwise products {aibj} give a family of
udempotents which satisfies > a;b; = (3 a;) (Z bj> = 1 and a;bjayby = 0 un-
less © = 4/,j = j/. Unless all udempotents a;b; are equal to a;, this gives a
direct sum decomposition for each subfield k;, which is impossible. Therefore,

the sets {b;} and {a;} coincide. m
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Finite morphisms

REMARK: Let M be a finitely generated R-module, and R — R’ a ring
homomorphism. Then M @ R’ is a finitely generated R’-module. Indeed,
if M is generated by z1,...,z,, then M ®p R’ is generated by z1, ..., zn.

DEFINITION: A morphism X — Y of affine varieties is called finite if the
ring Oy is a finitely generated module over Oy . In this case, Oy is called an
integral extension of Oy .

THEOREM: Let X i> Y be a finite morphism. Then for any point y € Y,

the preimage f—1(y) is finite.

Proof. Stepl: Since Oy is finite generated as an Oy-module, the ring R :=
Ox ®p, (Oy/my) is finitely generated as an Oy /my-module. Since Oy /my = C,
we obtain that R is an Artinian algebra over C.

Step 2: Let N C R be a nilradical. As shown above, Spec(R/N) is a finite
set.

Step 3: On the other hand, as shown in the last lecture, Spec(R/N) =

f7i(y). m
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Bilinear invariant forms

DEFINITION: Let R be a k-algebra, and g: R x R— k a k-bilinear sym-
metric form on R. The form g is called invariant if g(x,yz) = g(zy, z) for all
x, vy, 2 € R.

REMARK: If R has unity, for any invariant form g we have g(x,y) = h(zy, 1),
hence g is determined by a linear functional a — g(a, 1).

EXAMPLE: Consider the ring R[z,y]/(z" 11, y*T1) and let e(z az-jxiyj) =
ann. T he corresponding bilinear invariant form g(z,y) := (xy) IS non-

derenerate (prove this).

CLAIM: Let [K : k] be a field extension, and £ a non-zero k-linear functional
on K. Then the bilinear form g(x,vy) := e(xy) IS non-degenerate.

Proof: Suppose e(a) # 0. Then g(z,z71a) # 0. =
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The trace form

DEFINITION: Trace tr(A) of a linear operator A € Endy (k™) represented by
a matrix (CLZ]) IS Z?’:l Qg

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear
form a,b — tr(ab), mapping a,b to the trace of endomorphism L, € End; R,
where [,;,(x) = abx. This form is called the trace form, and denoted as

trk(ab).

REMARK: Let [K : k] be a finite field extension. As shown above, the trace
form tri.(ab) is non-degenerate, unless tr; is identically O.
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Separable extensions

DEFINITION: A field extension [K : k] is called separable if the trace form
tr.(ab) is non-zero.

REMARK: If chark = 0, every field extension is separable, because
trk(l) = dimk K.

THEOREM: Let R be an Artinian algebra over k£ with non-degenerate trace
form. Then R is semisimple.

Proof: Since trip(ab) = 0 for any nilpotent a (indeed, the trace of a nilpotent
operator vanishes), the ring R contains no non-zero nilpotents. =
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Tensor product of field extensions

LEMMA: Let R, R’ be Artinian k-algebras. Denote the corresponding trace
forms by g, ¢’. Consider the tensor product R ®; R’ with a natural structure
of Artinian k-algebra. Then the trace form on R®;, R’ is equal g ® ¢’, that
IS,

trR®kR/(:E &) Yy, z 039 t) — g(xa Z)g/(y7 t) (*)

Proof: Let V,W be vector spaces over k, and u,p endomorphisms of V, W.
Then tr(u ® p) = tr(w) tr(p), which is clear from the block decomposition of
the matrix u ® p. This gives the trace for any decomposable vector
r®r € R®, R'. The equation (*) is extended to the rest of R ®; R by
because decomposable vectors generate R Q. R =

COROLLARY: Let [K1 : k], [Ko : k] be separable extensions. Then the
Artinian k-algebra K; ®;. Ko Is semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on Kj ®; K> is non-degenerate, because g ® ¢’ is
non-degenerate whenever g, ¢’ is non-degenerate. m

REMARK: In particular, if chark = 0, the product of finite extensions of
the field £ is always a direct sum of fields.
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