Commutative Algebra

lecture 10: Finite-dimensional *k*-algebras

Misha Verbitsky

http://verbit.ru/IMPA/CA-2022/

IMPA, sala 2

January 27, 2022

Field extensions

DEFINITION: An extension of a field k is a field K containing k. We write "K is an extension of k" as [K : k].

DEFINITION: Let $k \subset K$ be a field contained in a field. In this case, we say that k is a **subfield** of K, and K is **extension** of k. An element $x \in K$ is called **algebraic** over K if x is a root of a non-zero polynomial with coefficients in k. An element which is not algebraic is called **transcendental**.

THEOREM: A sum and a product of algebraic numbers is algebraic.

DEFINITION: A field extension $K \supset k$ is called **algebraic** if all elements of K are algebraic over k. A field k is called **algebraically closed** if all algebraic extensions of k are trivial.

EXAMPLE: The field \mathbb{C} is algebraically closed.

DEFINITION: In this lecture, k-algebra is a ring containg a field k, not necessarily with unity. **All** k-algebras are tacitly assumed commutative. **Homomorphisms of** k-algebras are k-linear map compatible with the multiplication.

Minimal polynomials

CLAIM: Let K be a finite-dimensional k-algebra with unity and without zero divisors. Then K is a field.

Proof: An injective endomorphism of finite-dimensional spaces is surjective. Therefore, for each $x \in K$, there exists $y \in K$ such that xy = 1.

DEFINITION: Let v be an element of a finite-dimensional k-algebra R, and $P(t) = t^n + a_{n-1}t^{n-1} + \ldots$ a polynomial of smallest possible degree with coefficients in k satisfying P(v) = 0. This polynomial is called **the minimal polynomial** of $v \in R$.

CLAIM: Let $v \in R$ be an element of finite-dimensional algebra R over k, and P(t) its minimal polynomial. Then the subalgebra $R_v \subset R$ generated by v is isomorphic to k[t]/(P).

Proof: By definition, R_v is a quotient of k[t] by an ideal I of all polynomials R(t) such that R(v) = 0. Since k[t] is a principal ideal ring (home assignment 5), I = (Q) for some polynomial Q(t) satisfying Q(v) = 0. Then Q is the minimal polynomial.

Irreducible polynomials

THEOREM: The polynomial ring k[t] is factorial (admits the unique prime decomposition).

Proof: See assignment 5. ■

DEFINITION: A polynomial $P(t) \in k[t]$ is **irreducible** if it is not a product of polynomials $P_1, P_2 \in k[t]$ of positive degree.

PROPOSITION: Let $(P) \subset k[t]$ be a principal ideal generated by the polynomial P(t). Then **the polynomial** P(t) **is irreducible if and only if the quotient ring** k[t]/(P) **is a field.**

Proof. Step1: The polynomial P is irreducible if and only if (P) is prime. This follows because k[t] is a factorial ring.

Step 2: The quotient ring k[t]/(P) is finite-dimensional over k. Then, it is a field if and only if it has no zero divisors.

Primitive extensions

DEFINITION: Let $P(t) \in k[t]$ be an irreducible polynomial. A field k[t]/(P) is called **an extension of** k **obtained by adding a root of** P(t). The extension [k[t]/(P) : k] is called **primitive**.

CLAIM: Let [K : k] be a finite extension. Then K can be obtained from k by a finite chain of primitive extensions. In other words, there exists a sequence of intermediate extensions $[K = K_n : K_{n-1} : K_{n-2} : ... : K_0 = k]$ such that each $[K_i : K_{i-1}]$ is primitive.

Artinian algebras over a field

DEFINITION: A commutative, associative k-algebra R is called **Artinian algebra** if it is finite-dimensional as a vector space over k. Artinian algebra is called **semisimple** if it has no non-zero nilpotents.

DEFINITION: Let $R_1, ..., R_n$ be k-algebras. Consider their direct sum $\oplus R_i$ with the natural (term by term) multiplication and addition. This algebra is called **direct sum of** R_i , and denoted $\oplus R_i$.

Today we are going to prove the following theorem.

THEOREM: Let A be a semisimple Artinian algebra. Then A is a direct sum of fields, and this decomposition is uniquely defined.

Idempotents

DEFINITION: Let $v \in R$ be an element of an algebra R satisfying $v^2 = v$. Then v is called **idempotent**.

REMARK: A product of two idemponents is clearly an idempotent. If *e* is an idemponent, then 1 - e is also an idempotent: $(1 - e)^2 = 1 - 2e + e^2 = 1 - e$.

COROLLARY: For each idemponent $e \in R$, one has e(1-e) = 0. Therefore, each idemponent $e \in A$ defines a decomposition of A into a direct sum: $A = eA \oplus (1-e)A$.

All Artinian algebras contain idempotents

THEOREM: Let A be an Artinian k-algebra without nilpotents. Then A contains an idempotent.

Proof. Step1: Since A is finite-dimensional, every decreasing chain of ideals stabilizes. Therefore, A contains an ideal $I \subset A$ which has no non-zero proper ideals. We shall consider I as a sub-algebra in A.

Step 2: Since A has no nilpotents, for each non-zero $z \in I$ we have $z^2 \neq 0$. Since I is minimal, we have zI = I.

Step 3: Since *I* is finite-dimensional, all elements of *I* are invertible as endomorphisms of *I*.

Step 4: Since *I* is finite-dimensional, the elements $z, z^2, z^3, ... \in End I$ are linearly dependent, which gives a polynomial relation P(z) = 0. If this polynomial has zero constant term, we divide it by z, and obtain another polynomial with the same property. Using induction, we obtain a polynomial relation P(z) = 0 with non-zero constant term. This gives a relation $Id_I = az + bz^2 + cz^3 + ...$ in the ring $End_k(I)$, with $a, b, c, ... \in k$.

Step 5: The element $U := az + bz^2 + cz^3 + ... \in I$ satisfies Ux = x for any $x \in I$. Therefore, U is an idempotent in A, and unity in I.

Structure theorem for semisimple Artinian algebras

REMARK: Step 5 proves the following useful statement. Let *I* be a commutative Artinian algebra without zero divisors. Then *I* containes unit, that is, *I* is a field.

COROLLARY: Let A be a semisimple Artinian algebra, that is, a finitedimensional commutative k-algebra without nilpotents. Then A is a direct sum of fields

Proof: Let $I \subset A$ be a non-trivial ideal. As shown above, I contains a nonzero idempotent a. Then a and b := 1 - a idempotents satisfying ab = 0, a + b = 1. This gives a direct sum decomposition $A = aA \oplus (1 - a)A$. Using induction in dim A, we may assume already that aA and (1 - a)A are direct sum of fields.

Structure theorem for semisimple Artinian algebras: uniqueness of decomposition

LEMMA: Let A be a direct sum of fields, $A = \bigoplus_i k_i$. Then the decomposition $A = \bigoplus_i k_i$ is defined uniquely, up to permutation of summands.

Proof: Let $A = \bigoplus_{i=1}^{n} k_i = \bigoplus_{j=1}^{m} k'_j$. and $a_1, ..., a_n$, $b_1, ..., b_n$ be the corresponding idempotents. Then the pairwise products $\{a_ib_j\}$ give a family of udempotents which satisfies $\sum a_ib_j = (\sum a_i)(\sum b_j) = 1$ and $a_ib_ja_{i'}b_{j'} = 0$ unless i = i', j = j'. Unless all udempotents a_ib_j are equal to a_i , this gives a direct sum decomposition for each subfield k_i , which is impossible. Therefore, the sets $\{b_j\}$ and $\{a_i\}$ coincide.

Finite morphisms

REMARK: Let M be a finitely generated R-module, and $R \longrightarrow R'$ a ring homomorphism. Then $M \otimes_R R'$ is a finitely generated R'-module. Indeed, if M is generated by $x_1, ..., x_n$, then $M \otimes_R R'$ is generated by $x_1, ..., x_n$.

DEFINITION: A morphism $X \longrightarrow Y$ of affine varieties is called **finite** if the ring \mathcal{O}_X is a finitely generated module over \mathcal{O}_Y . In this case, \mathcal{O}_X is called **an integral extension** of \mathcal{O}_Y .

THEOREM: Let $X \xrightarrow{f} Y$ be a finite morphism. Then for any point $y \in Y$, **the preimage** $f^{-1}(y)$ **is finite.**

Proof. Step1: Since \mathcal{O}_X is finite generated as an \mathcal{O}_Y -module, the ring $R := \mathcal{O}_X \otimes_{\mathcal{O}_Y} (\mathcal{O}_Y/\mathfrak{m}_y)$ is finitely generated as an $\mathcal{O}_Y/\mathfrak{m}_y$ -module. Since $\mathcal{O}_Y/\mathfrak{m}_y = \mathbb{C}$, we obtain that R is an Artinian algebra over \mathbb{C} .

Step 2: Let $N \subset R$ be a nilradical. As shown above, Spec(R/N) is a finite set.

Step 3: On the other hand, as shown in the last lecture, $\operatorname{Spec}(R/N) = f^{-1}(y)$.

Bilinear invariant forms

DEFINITION: Let *R* be a *k*-algebra, and $g : R \times R \longrightarrow k$ a *k*-bilinear symmetric form on *R*. The form *g* is called **invariant** if g(x, yz) = g(xy, z) for all $x, y, z \in R$.

REMARK: If *R* has unity, for any invariant form *g* we have g(x, y) = h(xy, 1), hence *g* is determined by a linear functional $a \rightarrow g(a, 1)$.

EXAMPLE: Consider the ring $\mathbb{R}[x,y]/(x^{n+1},y^{n+1})$, and let $\varepsilon \left(\sum a_{ij}x^iy^j\right) := a_{nn}$. The corresponding bilinear invariant form $g(x,y) := \varepsilon(xy)$ is non-derenerate (prove this).

CLAIM: Let [K : k] be a field extension, and ε a non-zero k-linear functional on K. Then the bilinear form $g(x, y) := \varepsilon(xy)$ is non-degenerate.

Proof: Suppose $\varepsilon(a) \neq 0$. Then $g(x, x^{-1}a) \neq 0$.

The trace form

DEFINITION: Trace tr(A) of a linear operator $A \in End_k(k^n)$ represented by a matrix (a_{ij}) is $\sum_{i=1}^n a_{ii}$.

DEFINITION: Let R be an Artinian algebra over k. Consider the bilinear form $a, b \longrightarrow tr(ab)$, mapping a, b to the trace of endomorphism $L_{ab} \in End_k R$, where $l_{ab}(x) = abx$. This form is called **the trace form**, and denoted as $tr_k(ab)$.

REMARK: Let [K : k] be a finite field extension. As shown above, the trace form $tr_k(ab)$ is non-degenerate, unless tr_k is identically 0.

Separable extensions

DEFINITION: A field extension [K : k] is called **separable** if the trace form $tr_k(ab)$ is non-zero.

REMARK: If char k = 0, every field extension is separable, because $tr_k(1) = \dim_k K$.

THEOREM: Let R be an Artinian algebra over k with non-degenerate trace form. Then R is semisimple.

Proof: Since $tr_k(ab) = 0$ for any nilpotent a (indeed, the trace of a nilpotent operator vanishes), the ring R contains no non-zero nilpotents.

Tensor product of field extensions

LEMMA: Let R, R' be Artinian k-algebras. Denote the corresponding trace forms by g, g'. Consider the tensor product $R \otimes_k R'$ with a natural structure of Artinian k-algebra. Then the trace form on $R \otimes_k R'$ is equal $g \otimes g'$, that is,

$$\operatorname{tr}_{R\otimes_k R'}(x\otimes y, z\otimes t) = g(x, z)g'(y, t). \quad (*)$$

Proof: Let V, W be vector spaces over k, and μ, ρ endomorphisms of V, W. Then $tr(\mu \otimes \rho) = tr(\mu)tr(\rho)$, which is clear from the block decomposition of the matrix $\mu \otimes \rho$. This gives the trace for any decomposable vector $r \otimes r' \in R \otimes_k R'$. The equation (*) is extended to the rest of $R \otimes_k R'$ by because decomposable vectors generate $R \otimes_k R'$.

COROLLARY: Let $[K_1 : k]$, $[K_2 : k]$ be separable extensions. Then the Artinian *k*-algebra $K_1 \otimes_k K_2$ is semisimple, that is, isomorphic to a direct sum of fields.

Proof: The trace form on $K_1 \otimes_k K_2$ is non-degenerate, because $g \otimes g'$ is non-degenerate whenever g, g' is non-degenerate.

REMARK: In particular, if char k = 0, the product of finite extensions of the field k is always a direct sum of fields.