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Tensor product of field extensions

LEMMA: Let R, R’ be Artinian k-algebras. Denote the corresponding trace
forms by g, ¢’. Consider the tensor product R ®; R’ with a natural structure
of Artinian k-algebra. Then the trace form on R®;, R’ is equal g ® ¢’, that
IS,

trR®kR/(:E &) Yy, z 039 t) — g(xa Z)g/(y7 t) (*)

Proof: Let V,W be vector spaces over k, and u,p endomorphisms of V, W.
Then tr(u ® p) = tr(w) tr(p), which is clear from the block decomposition of
the matrix u ® p. This gives the trace for any decomposable vector
r®r € R®;, R'. The equation (*) is extended to the rest of R ®; R’ because
decomposable vectors generate R®;, R'. m

COROLLARY: Let [K1 : k], [Ko : k] be separable extensions. Then the
Artinian k-algebra K; ®;. Ko Is semisimple, that is, isomorphic to a direct
sum of fields.

Proof: The trace form on Kj ®; K> is non-degenerate, because g ® ¢’ is
non-degenerate whenever g, ¢’ is non-degenerate. m

REMARK: In particular, if chark = 0, the product of finite extensions of
the field £ is always a direct sum of fields.
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Tensor product of fields: examples and exercises

PROPOSITION: Let P(t) € k[t] be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P(t). Then K1 ® K = K[t]/P(t). =

COROLLARY: Let P(t) be a polynomial over k, [K : k] an extension,
and K1 = k[t]/P(t). Assume that P(t) is a product of n distinct degree 1
polynomials over K. Then K{ ® K £ K|[t]/P(t) = K%,

Proof: Let P = (t —a1)(t — a3)...(t — an). The natural map K[t]/(P) —
@, K[t]/(t — a;) = KP"K is injective, because any polynomial which vanishes
inai,an,...,an is divisible by P. Since the spaces K|[t]/(P) and K|[t]/(t—a;) = K
are n-dimensional, 7 is an isomorphism. =

REMARK: Surjectivity of 7 is known as “Chinese remainders theorem”.

EXERCISE: Let P(t) € Q[t] be a polynomial which has exactly r real roots
and 2s complex, non-real roots. Prove that (Q[t]/P) ®gR = @;C D B, R.

REMARK: Similarly, for any irreducible polynomial P(t) € k[t] which
has an irreducible decomposition P(t) = []; P;(t) in KJ[t], with all P;(t)
coprime, one has k[t]/(P) ®, K = K|[t]/P(t) = &, K|[t]/FP;(t). Proof is the
same.
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EXistence of algebraic closure

REMARK: Algebraic closure [k : k] is obtained by taking a succession
of increasing algebraic extensions, adding to each the roots of irreducible
polynomials, and using the Zorn lemma to prove that this will end up in a
field which has no non-trivial extensions.
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Tensor product of fields and algebraic closure

THEOREM: Let [k : k] be the algebraic closure of k, and [K : k] a separable
finite extension. Then K Q. k = @ k.

Proof. Stepl: Consider a homomorphism K < k, acting as identity on k.
Such a homomorphism exists by construction of the algebraic closure. Then

K®pk=(K®,K)®Kk
by associativity of tensor product.

Step 2: Since [K : k] is separable, K®,. K = @ K;. There are at least 2 non-
trivial summands in @ K;, because for each irreducible polynomial P(t) € k[¢]
which has roots in K, one has K D k[t]/(P), but K®,k[t]/(P) = &; K[t]/(F;),
where P;(t) € KI[t] are irreducible components in the prime decomposition
of P(t) over K, with P(t) = []; P;(t). This gives non-trivial idempotents in
K ®i k[t]/(P), hence in K ®, K D K ® (k[t]/(P)).

Step 3: By associativity of tensor product,

Since dim; K = Y,dimyg K; > max;dimg K;, the equation K . k = @k
follows from (*) and induction on dim;, K. =
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Primitive element theorem

LEMMA: Let k be a field, and A :=@]_; k. Then A contains only finitely
many different k-algebras.

Proof: Let eq,...,e, be the units in the summands of A. Then any idempotent
a € Ais asum of idempotents a = ) ¢;a, but e;a belongs to the +-th summand
of A. Then e;a = 0 or e;a = ¢;, because k contains only two idempotents.
This implies that any k-algebra A; C A is generated by an idempotent a,
which is sum of some qg;. =

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element =z € K, that is, an element which generates K.

Proof. Stepl: Let k£ be the algebraic closure of k. The number of in-
termediate fields K D K’ D k is finite. Indeed, all such fields correspond
to k-subalgebras in K ®; k, and there are finitely many k-subalgebras in
K ®i k because K @k = @, k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K O K’ D k. Such an element exists, because k is infinite, and K’ belong
to a finite set of subspaces of positive codimension. Then z is primitive,
because it generates a subfield which is equal to K. m
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Galois extensions

DEFINITION: Let [K : k] be a finite extension. It is called a Galois exten-
sion if the algebra K @, K is isomorphic to a direct sum of several copies of
K.

EXERCISE: Let K = k[t]/(P) be a primitive, separable extension, with
deg P(t) = n.

1. Prove that [K : k] is a Galois extension if and only if P(¢t) has n roots
in K[t].

2. Consider an extension [K' : K] obtained by adding all roots of all irreducible
components of P(t) € K[t]. Prove that [K': k] is a Galois extension.
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Galois group

EXERCISE: Let [K : k] be a finite extension, and G := Aut, K the group
of k-linear automorphisms of K. Prove that [K : k] is a Galois extension if
and only if the set K& of G-invariant elements of K coincides with k.

DEFINITION: Let [K : k] be a Galois extension. Then the group Aut; K is
called the Galois group of [K : k].

THEOREM: (Main theorem of Galois theory)

Let [K : k] be a Galois extension, and Gal, K its Galois group. Then the
subgroups H C Gal,K are In bijective correspondence with the inter-
mediate subfields k ¢ K ¢ K, with K obtained as the set of H-invariant
elements of K.

EXERCISE: Prove that for any ¢ = p" there exists a finite field Fq of ¢
elements. Prove that [F, : Fp] is a Galois extension. Prove that its Galois
group is cyclic of order n, and generated by the Frobenius automorphism
mapping = to xP.



