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Zariski topology

DEFINITION: Zariski topology on an algebraic variety is a topology, where

closed sets are algebraic subsets. Zariski closure of Z ⊂M is an intersection

of all Zariski closed subsets containing Z.

DEFINITION: Cofinite topology is the topology on a set S such that the

only closed subsets are S and finite sets.

EXERCISE: Prove that Zariski topology on C coincides with the cofinite

topology.

CAUTION: Zariski topology is non-Hausdorff.
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Zariski topology (2)

REMARK: We defined the Zariski topology on the set of points of A, that is,

on the set of maximal ideals of OA (this is how Zariski defined it). Following

Grothendieck, one defines the Zariski topology on the set Specpr(OA)

of all prime ideals in OA: closed subsets ZI in this topology correspond

to prime ideals containing a given ideal I ⊂ OA.

Oscar Zariski

(1899 – 1986)
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Dominant morphisms

DEFINITION: Dominant morphism is a morphism f : X −→ Y , such that

Y is a Zariski closure of f(X).

PROPOSITION: Let f : X −→ Y be a morphism of affine varieties. The

morphism f is dominant if and only if the homomorphism OY
f∗−→ OX

is injective.

Proof. Step1: If f∗ is not injective, f(X) lies in the set of common zeros

of the ideal ker f∗. Indeed, points of X are the same as maximal ideals and

the same as homomorphisms OX −→ C, and the points of f(X) are homomor-

phisms OY −→ C obtained as a composition OY
f∗−→ OX −→ C.

Step 2: If f(X) is contained in the set of common zeros of the ideal J ⊂ OY ,

all functions α ∈ J vanish on f(X). This implies that f∗(α) = 0.
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Field of fractions

DEFINITION: Let S ⊂ R be a subset of R, closed under multiplication

and not containing 0. Localization of R in S is a ring, formally generated

by symbols a/F , where a ∈ R, F ∈ S, and relations a/F · b/G = ab/FG,

a/F + b/G = aG+bF
FG and aF k/F k+n = a/Fn.

DEFINITION: Let R be a ring without zero divisors, and S the set of all

non-zero elements in R. Field of fractions of R is a localization of R in S.

CLAIM: Let f : X −→ Y be a dominant morphism, where X is irreducible.

Then Y is also irreducible. Moreover, f∗ : OY −→OX can be extended to

a homomorphism of the fields of fractions k(Y )−→ k(X).

Proof. Step1: Since OY is embedded in OX, and the later has no zero

divisors, OY has no zero divisors, hence Y is irreducible.

Step 2: Embedding of rings without zero divisors can be extended to the

fields of fractions: f∗(a/F ) = f∗(a)/f∗(F ).
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Principal divisors

DEFINITION: Let X be an affine variety, and f ∈ OX a regular function

which does not vanish on any of irreducible components of X. The zero set

of f is called a principal divisor on X. Its irreducible components are called

divisors on X.

REMARK: Let X ⊂ Cn be an affine variety, given by ideal I ⊂ C[x1, ..., xn],

and D ⊂ X be a divisor. Then X\D is an affine variety, given by an ideal

I + 〈ft− 1〉 ⊂ C[x1, ..., xn, t].

DEFINITION: A dominant morphism of irreducible varieties is called bira-

tional if the corresponding homomorphism of the fields of fractions is an

isomorphism.

EXAMPLE: The natural map X\D ↪→ X is birational.
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Birational morphisms

PROPOSITION: Let f : X −→ Y be a birational morphism. Then there

exists a divisor Z ⊂ Y such that f : (X\f−1(Z))−→ Y \Z is an isomor-

phism.

Proof. Step1: Since OX is finitely generated, there exists F ∈ OY such

that for all a ∈ OX there exists b ∈ OY such that a = f
(
b
F k

)
. Indeed,

for each generator xi of OX there exists yi, Fi ∈ OY such that xi = f
(
yi
Fi

)
.

Choosing F =
∏
Fi, we obtain that xi = f

(
y′i
F

)
, where y′i = yi

∏
j 6=i Fj. Then for

each homogeneous polynomial P (xi, ..., xj) of degree d we have P (x1, ..., xn) =

f

(
P (y′1,...y

′
n)

F d

)
.

Step 2: Let Z be the set of all p ∈ Y such that F (p) = 0. Then F is

invertible in Y \Z, hence f−1 : Y \Z −→X is a polynomial map. Therefore,

f : (X\f−1(Z))−→ Y \Z is invertible.
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Integral dependence

DEFINITION: Let A ⊂ B be rings. An element b ∈ B is called integral
over A if the subring A[b] = A · 〈1, b, b2, b3, ...〉, generated by b and A, is finitely
generated as A-module.

DEFINITION: Monic polynomial is a polynomial with leading coefficient 1.

REMARK: When A is Noetherian, the following statement is an equivalence
of two characterizations of Noetherian A-modules. However, it is true without
the Noetherian assumtion.

CLAIM: An element x ∈ B is integral over A ⊂ B if and only if the chain
of submodules

A ⊂ A · 〈1, x〉 ⊂ A · 〈1, x, x2〉 ⊂ A · 〈1, x, x2, x3〉 ⊂ ...
terminates.

Proof: If the chain terminates, then A[x] is clearly finitely generated. Con-
versely, if A[x] is finitely generated, any degree of x can be expressed through
a finite number of generators, which can be expressed as polynomials on x.

COROLLARY: An element x ∈ B is integral over A ⊂ B ⇔ x is a root
of a monic polynomial with coefficients in A.

8



Commutative Algebra, lecture 12 M. Verbitsky

Sum and product of integral elements is integral

EXERCISE: Let x, y ∈ B ⊃ A, with x integral over A and y integral over

A[x]. Prove that y is integral over A.

CLAIM: Let A ⊂ B be Noetherian rings. Then sum and product of ele-

ments which are integral over A is also integral.

Proof: Let x, y ∈ B be integral over A. Since y is integral over A[x], which is

finitely generated as A-module, the ring A[x, y] is finitely generated as an A-

module. Since A is Noetherian, a submodule of finitely-generated A-module

is finitely-generated, hence x+ y and xy ∈ A[x, y] are also integral.
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Integral closure

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are

integral over A is called the integral closure of A in B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of

fractions. The set of all elements a ∈ k(A) which are integral over A is called

the integral closure of A. A ring A is called integrally closed if A coincides

with its interal closure in k(A).

REMARK: As shown above, the integral closure is a ring.

DEFINITION: An affine variety X is called normal if all its irreducible com-

ponents Xi are disconnected, and the ring of functions OXi for each of these

irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism

Y −→X is an isomorphism.
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Factorial rings

DEFINITION: An element p of a ring R is called indecomposable if for any

decomposition p = p1p2, either p1 or p2 is invertible.

DEFINITION: A ring R without zero divisors is called factorial if any element

r ∈ R can be represented as a product of indecomposable elements, r =
∏
i p
αi
i ,

and this decomposition is unique up to invertible factors and permutation of

pi.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.

Proof. Step1: Let u, v ∈ A, and u/v ∈ k(A) a root of a monic polynomial

P (t) ∈ A[t] of degree n. Then un is divisible by v in A.

Step 2: Let u/v ∈ k(A) be a root of a monic polynomial P (t) ∈ A[t]. Assume

that u, v are comprime. Since un is divisible by v, and they are coprime,

v is invertible by factoriality of A. Then u/v ∈ A.
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