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Integral closure (reminder)

DEFINITION: Let A ⊂ B be rings. An element b ∈ B is called integral
over A if the subring A[b] = A · 〈1, b, b2, b3, ...〉, generated by b and A, is finitely
generated as A-module.

DEFINITION: Let A ⊂ B be rings. The set of all elements in B which are
integral over A is called the integral closure of A in B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of
fractions. The set of all elements a ∈ k(A) which are integral over A is called
the integral closure of A. A ring A is called integrally closed if A coincides
with its interal closure in k(A).

REMARK: The integral closure is a ring.

DEFINITION: An affine variety X is called normal if its irreducible com-
ponents Xi don’t intersect, and the ring of functions OXi for each of these
irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism
Y −→X is an isomorphism.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.
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Ernst Kummer

Ernst Eduard Kummer (1810-1893)
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Richard Dedekind

Richard Dedekind (1831 - 1916)
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Gauss lemma

EXERCISE: Let R be a ring without zero divisors. Prove that the poly-

nomial ring R[t] has no zero divisors.

THEOREM: (“Gauss lemma”)

Let R be a factorial ring. Then the ring of polynomials R[t] is also

factorial.

Proof: See the next slide.

DEFINITION: Let R be a factorial ring. A polynomial P (t) ∈ R[t] is called

primitive if the greatest common divisor of its coefficients is 1.

Lemma 1: Let P1, P2 ∈ R[t] be primitive polynomials. Then their product

is also primitive.

Proof: Let p ∈ R be a prime. Since the polynomials P1, P2 are primitive,

they are non-zero modulo p. Since the ring R/(p) has no zero divisors, the

product P1P2 is non-zero in R/(p)[t], hence the greatest common divisor of

the coefficients of P1P2 is not divisible by p.
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Irreducibility of polynomials in R[t] and K[t]

Lemma 1: Let P1, P2 ∈ R[t] be primitive polynomials. Then their product

is also primitive.

Lemma 2: Let R be a factorial ring, and K its fraction field. Then any prim-

itive polynomial P ∈ R[t], which is irreducible in R[t], is also irreducible

in K[t].

Proof: Assume that P is decomposable in K[t]. Then rP = P1P2, where

P1, P2 ∈ R[t] and r ∈ R. Let s1, s2 be the greatest common divisors of the

coefficients of P1, P2. Then rP = s1s2P
′
1P
′
2, and P ′1, P

′
2 are primitive. In this

case P ′1P
′
2 is primitive (Lemma 1), hence the greatest common divisor of

the coefficients of s1s2P
′
1P
′
2 is s1s2. Since P is also primitive, the greatest

common divisor of the coefficients of rP = s1s2P
′
1P
′
2 is r. Then r

s1s2
is

invertible, and P is decomposable in R[t].
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Gauss lemma (proof)

THEOREM: (“Gauss lemma”)

Let R be a factorial ring. Then the ring of polynomials R[t] is also

factorial.

Proof: Let K be the fraction field of R. The ring K[t] is factorial, because

it is Euclidean (handout 3). Lemma 2 implies that a prime decomposition

of a primitive polynomial P (t) ∈ R[t] is uniquely determined by its prime

decomposition in K[t], hence it is unique. A non-primitive polynomial is

decomposed as a product of the greatest common divisor of its coefficients

and a primitive polynomial, hence its prime decomposition is also unique.

COROLLARY: The affine space Cn is a normal variety. Moreover, for any

variety X with factorial ring OX of regular functions, the product X×Cn

is also normal.

Proof: As we have shown previously, OX×Cn = OX⊗CC[t1, ..., tn] = OX[t1, ..., tn].

This ring is factorial by Gauss lemma.
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777 - 1855)
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Disquisitiones Arithmeticae

“Disquisitiones Arithmeticae”,

written by Gauss in 1798, in Latin, when he was 21.

This book contains “Gauss Lemma”.
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Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a

finite extension of its field of fractions, and B the integral closure of A in K.

Then B is finitely generated as an A-module.

Proof. Step1: For any b ∈ B, denote by Lb : K −→K the map of mul-

tiplication by b. Consider Lb as a k(A)-linear endomorphism of the finite-

dimensional space K over k(A), and define the trace Tr(b) := Tr(Lb). Clearly

Tr(b) = d
dt det(tIdK − tLb)(0). Since b is a root of monic polynomial, the op-

erator Lb ∈ Endk(K) can be represented by a matrix with coefficients in A.

Therefore, for any b ∈ B integral over A, the trace of b is integral over A.

Step 2: The bilinear symmetric form x, y −→ Tr(xy) is non-degenerate. In-

deed, Tr(xx−1) = dimk(A)K, and char k(A) = 0.

Step 3: Choose a basis e1, ..., en in the k(A)-vector space K. Let Pi(t) ∈
k(A)[t] be the minimal polynomials of ei. Write Pi(t) = Ait

ni +
∑
j<ni aijt

j,

where Ai, aij ∈ A. Then Aiei is a root of a monic polynomial P̃i(t) = tni +∑
j<niA

ni−jaijtj. This proves that the basis e1, ..., en in K : k(A) can be

chosen such that all ei are integral over A, that is, all ei belong to B.
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Finiteness of integral closure (2)

Step 4: Let e∗i ∈ K be the dual basis with respect to the form Tr, with
Tr(e∗i ej) = δij. Consider the A-module M ⊂ K generated by e∗i . Clearly,
M := {b ∈ K | Tr(bei) ∈ A}.

Step 5: For any b ∈ B, the trace Tr(bei) belongs to A, because bei is integral
over A (Step 1). Then B ⊂M , and B is a submodule of a finitely generated
A-module M. Since A is Noetherian, B is finitely generated as A-module.

COROLLARY: Let B be a ring over C. Assume that there exists an injective
ring morphism from A = C[x1, ..., xk] to B such that B is finitely generated
as an A-module. Then its integral closure B̂ is a finitely generated A-
module. In particlular, B̂ is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies.

DEFINITION: Let X be an affine variety, and Â the integral closure of its
ring of regular functions. Assume that Â is a finitely generated ring. Then
X̃ := Spec(Â) is called the normalization of X.

REMARK: Using Noether’s normalization lemma, we shall prove that Â is
always finitely generated.
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