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Integral closure (reminder)

DEFINITION: Let A C B be rings. An element b € B is called integral
over A if the subring A[b] = A-(1,b,b2,b3,...), generated by b and A, is finitely
generated as A-module.

DEFINITION: Let A C B be rings. The set of all elements in B which are
integral over A is called the integral closure of A in B.

DEFINITION: Let A be the ring without zero divisors, and k(A) its field of
fractions. The set of all elements a € kK(A) which are integral over A is called
the integral closure of A. A ring A is called integrally closed if A coincides
with its interal closure in k(A).

REMARK: The integral closure is a ring.

DEFINITION: An affine variety X is called normal if its irreducible com-
ponents X; don't intersect, and the ring of functions Ox, for each of these
irreducible components is integrally closed.

REMARK: Equivalently, X is normal if any finite, birational morphism
Y — X 1S an isomorphism.

PROPOSITION: Let A be a factorial ring. Then it is integrally closed.
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Ernst Kummer

Ernst Kummer (1810-1893)
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Richard Dedekind

Richard Dedekind (1831 - 1916)
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Gauss lemma

EXERCISE: Let R be a ring without zero divisors. Prove that the poly-
nomial ring R[t] has no zero divisors.

THEOREM: (“Gauss lemma’)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: See the next slide.

DEFINITION: Let R be a factorial ring. A polynomial P(t) € R[t] is called
primitive if the greatest common divisor of its coefficients is 1.

Lemma 1: Let Py, P> € R[t] be primitive polynomials. Then their product
IS also primitive.

Proof: Let p € R be a prime. Since the polynomials Pi, P> are primitive,
they are non-zero modulo p. Since the ring R/(p) has no zero divisors, the
product P; P> is non-zero in R/(p)[t], hence the greatest common divisor of

the coefficients of P; P> is not divisible by p. =
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Irreducibility of polynomials in R[t] and K|[t]

Lemma 1: Let Py, P> € R[t] be primitive polynomials. Then their product
IS also primitive.

Lemma 2: Let R be a factorial ring, and K its fraction field. Then any prim-
itive polynomial P € R[t], which is irreducible in R[t], is also irreducible
in K[t].

Proof: Assume that P is decomposable in K[t]. Then rP = PP, where
P1,P> € R[t] and r € R. Let s1,s> be the greatest common divisors of the
coefficients of Py, P,. Then rP = s1spP]P5, and Pj, P5 are primitive. In this
case PiP; is primitive (Lemma 1), hence the greatest common divisor of
the coefficients of slsgP{Pé IS s1so. Since P is also primitive, the greatest
common divisor of the coefficients of rP = s1spP1P; is r. Then = is
invertible, and P is decomposable in R[t]. =
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Gauss lemma (proof)

THEOREM: (“Gauss lemma’)
Let R be a factorial ring. Then the ring of polynomials R[t] is also
factorial.

Proof: Let K be the fraction field of R. The ring K][t] is factorial, because
it is Euclidean (handout 3). Lemma 2 implies that a prime decomposition
of a primitive polynomial P(t) € R[t] is uniquely determined by its prime
decomposition in KJt], hence it is unique. A non-primitive polynomial is
decomposed as a product of the greatest common divisor of its coefficients
and a primitive polynomial, hence its prime decomposition is also unique. =

COROLLARY: The affine space C" is a normal variety. Moreover, for any
variety X with factorial ring Oy of regular functions, the product X x C"
IS also normal.

Proof: As we have shown previously, Oxwcn = Ox®QcClt1,...,tn] = Ox[t1, ..., tn].
This ring is factorial by Gauss lemma. =
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Carl Friedrich Gauss

Carl Friedrich Gauss (1777 - 1855)
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Disquisitiones Arithmeticae
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Finiteness of integral closure

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a
finite extension of its field of fractions, and B the integral closure of A in K.
Then B is finitely generated as an A-module.

Proof. Stepl: For any b € B, denote by L, : K — K the map of mul-
tiplication by b. Consider L, as a k(A)-linear endomorphism of the finite-
dimensional space K over k(A), and define the trace Tr(b) := Tr(L;). Clearly
Tr(b) = %det(tld;{ —tLy)(0). Since b is a root of monic polynomial, the op-
erator L, € End,(K) can be represented by a matrix with coefficients in A.
Therefore, for any b € B integral over A, the trace of b is integral over A.

Step 2: The bilinear symmetric form z,y — Tr(xy) is non-degenerate. In-
deed, Tr(zz~ 1) = dimy 4y K, and chark(A) = 0.

Step 3: Choose a basis eq,...,en in the k(A)-vector space K. Let Pi(t) €

k(A)[t] be the minimal polynomials of e;. Write Pi(t) = Ajt"i + 3 ;. aijtj,

where A;,a;; € A. Then Aje; is a root of a monic polynomial P;(t) = t"™ +

> j<n; A% Ja;;t7. This proves that the basis eg,...,en In K @ k(A) can be

chosen such that all ¢; are integral over A, that is, all ¢; belong to B.
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Finiteness of integral closure (2)

Step 4: Let e;f € K be the dual basis with respect to the form Tr, with
Tr(eje;) = §;;. Consider the A-module M C K generated by ef. Clearly,
M:={be K | Tr(be;) € A}.

Step 5: For any b € B, the trace Tr(be;) belongs to A, because be; is integral
over A (Step 1). Then B C M, and B is a submodule of a finitely generated
A-module M. Since A is Noetherian, B is finitely generated as A-module. m

COROLLARY.: Let B be aring over C. Assume that there exists an injective
ring morphism from A = Clz1,...,x;] to B such that B is finitely generated
as an A-module. Then its integral closure B is a finitely generated A-
module. In particlular, B is a finitely generated ring.

Proof: Since A is factorial, it is integrally closed, and the previous theorem
applies. m

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Assume that A is a finitely generated ring. Then
X = Spec(A) is called the normalization of X.

REMARK: Using Noether’'s normalization lemma, we shall prove that A is
always finitely generated.
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