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Nakayama’s lemma

QUESTION: Let a C A be a non-trivial ideal in a Noethe-
rian ring. How can we prove that ), a’ = 07

ANSWER: Nakayama’s lemmal!

REMARK: N, a* = 0 does not hold in the ring of smooth
functions, which is non-Noetherian.

DEFINITION: An A-module M is called torsion-free if Tadashi Nakayama
for any non-zero a € A, and any non-zero m € M, one has (1912-1964)

am #= 0.

Nakayama’s lemma: Let A be a Noetherian ring, and M a finitely-generated
torsion-free A-module. Then for any non-trivial ideal a C A, aM = M

implies M = 0.
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Nakayama’s lemma (2)

Nakayama’s lemma: Let A be a Noetherian ring, and M a finitely-generated
torsion-free A-module. Assume that the annihilator Anny; ;={a€ A | aM =
0} vanishes. Then for any non-trivial ideal a C A, aM = M implies M = 0.

Proof. Stepl: For any finitely-generated A-module M over a Noetherian
ring, End 4(M) is finitely-generated as an A-module (prove it as an exercise).

Step 2: For any ® € End4(M), consider the subalgebra A[®] C End4(M),
generated by ®. Since End (M) is finitely generated, A[d] is Noetherian.
T herefore, " is expressed as a sum Z?:_& a; ' for n sufficiently big. We
obtain that ® is a root of monic polynomial with coefficients in A.

Step 3: Let ® € Endy(M), eq,...,en generators of M, and (a;;) the matrix of
& written in this basis (it is non-unique). Define characteristic polynomial
of ® as Chpolyq,(t) := det(tld —A), where A = (a;;).
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Nakayama’s lemma (2)

Step 3: Let ® € Endy(M), eq,...,en generators of M, and (a;;) the matrix of
&d written in this basis (it is non-unique). Define characteristic polynomial
of ® as Chpolys (t) := det(tld —A), where A = (a;;).

Step 4: Cayley-Hamilton theorem gives Chpolygy(®) = 0 for any endomor-
phism of a finite-dimensional space over a field k. Then the same is true for
a free module over any subring R C k, in particular, for a polynomial ring.
However, any ring is a quotient of (possibly infinitely generated) polynomial
ring, hence Chpolyp () = 0 is true for any endomorphism of a free, finitely-
generated A-module. Since any finitely-generated module is a quotient of a
free module, we have Chpolyg,(®P) =0 for any ® € End4(M).

Step 5: Let Chpolyyq,, () = t”—l—z;’g& a;t' be the characteristic polynomial for
the identity map Id,; € End4(M). This polynomial depends on the choice of
generators of M. Cayley-Hamilton give Chpoly;;(Id) = 0, hence (} a;+1) =
O in the ring End4(M). Thering End4(M) contains A, because Anng M = 0.
Then 1 = —> a; in A. This is the only place we use the assumption
Ann 4 M = 0.

Step 6: If aM = M, the identity map can be represented by a matrix (aij)
with a;; € a. Step 5 gives Y a; + 1 = 0, which is impossible. =
4
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Krull theorem

THEOREM: (Krull theorem)
Let a C A be an ideal in a Noetherian ring without zero
divisors. Then Na"™ =

Proof: Let M := (N a"™. This is a torsion-free module satis-
fying aM = M. Nakayama’'s lemma implies M = 0. m

REMARK: A version of Nakayama’s lemma is valid for all
A-modules, regardless of torsion.

Wolfgang Krull (1899-
1971), Gottingen, 1920

THEOREM: (Nakayama’s lemma)

Let A be a Noetherian ring, and M a finitely-generated A-module. Then for
any non-trivial ideal a C A, aM = M implies that (1 4+ a)M = 0, for some
a & a.

Proof: Let Anny; :=={a€ A | aM = 0}. Replace A by A/Ann); and apply
Step 5 of Nakayama Lemma. =
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Local rings
DEFINITION: A ring A is called local if it has only one maximal ideal.

DEFINITION: Let p C A be a prime ideal, and S C A its complement.
Localization of A in p is A[S™1].

CLAIM: Localization of A in p is local.

Proof: Any = € A\p is invertible, hence p is maximal ideal containing all
ideals in A. =

CLAIM: Let A be a Noetherian local ring, m its maximal ideal, and & &
Hom 4(Mq, M>) a homomorphism of finitely-generated A-modules. Suppose
that & induces a surjective map HOmA/m(M]_/mM]_,MQ/mMQ). Then o is
surjective.

Proof: Let M3 = cokerd. For any x € Mo, one has x € im® mod m.
Therefore, mM3 = M3. Then Nakayama’'s lemma implies that (1 +a)M3 = 0,
for some a € m. Since 1 + a is invertible, this implies that M3 = 0. =

6
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Finite morphisms (reminder)

REMARK: Let M be a finitely generated R-module, and R— R’ a ring
homomorphism. Then M ®p R’ is a finitely generated R’-module. Indeed,
if M is generated by z1,...,zn, then M®rR' is generated by z1®1,...,2,1.

DEFINITION: A morphism X — Y of affine varieties is called finite if the
ring Ox is a finitely generated module over Oy . In this case, Oy is called an
integral extension of Oy .

THEOREM: Let X i> Y be a finite morphism. Then for any point y € Y,

the preimage f—1(y) is finite.

Proof. Stepl: Since Oy is finite generated as an Oy-module, the ring R :=
Ox ®, (Oy/my) is finitely generated as an Oy /my-module. Since Oy /my = C,
we obtain that R is an Artinian algebra over C.

Step 2: Let N C R be a nilradical. As shown in Lecture 11, Spec(R/N) is a
finite set.

Step 3: As shown in Lecture 10, Spec(R/N) = f~1(y). m
{
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Dominant, finite morphisms are surjective

THEOREM: Let f: X —Y Dbe a finite, dominant morphism of affine
varieties. Then f is surjective.

Proof. Stepl: Restricting to irreducible components, we can always assume
that Y, and hence X is irreducible. Let A = Oy, B = Ox. We can consider
A as a subring of B, which has no zero divisors, and assume that B is finitely
generated as A-module.

Step 2: Let my C A be a maximal ideal corresponding to y € Y. Nakayama’s
lemma implies that myB # B.

Step 3: f~1(y) = Spec(B®4A/my) = Spec(B/myB). Since this is non-zero
ring, the set f~1(y) is non-empty. =



