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Noether’s normalization lemma (first version)

PROPOSITION: Let X C C™ be an irreducible affine subvariety, z; coordi-
nates on C", and zq, ..., 2z transcendence basis on k(X ). Then, for all A1, ..., A\
outside of the zero-set of a certain non-zero homogeneous polynomial, the
function z, € Ox is a root of a monic polynomial in the variables 21, ..., 2},
where zé = z; + \;jZn-

Proof: Lecture 14. m

Corollary 1: (Noether’s normalization lemma, first version)

Let X C C" be an irreducible affine subvariety, z; coordinates on C", and
z1, ..., 21 transcendence basis on k(X ). Then there exists a linear coordinate
change z! := z; + 227’;’{ Ai+kZj+k» SUCh that the projection [ @ X — Ck

to the first £ arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection P, : X —cr1is
finite onto its image X7 (after some linear adjustment). Using induction by
n, we can assume that P, : X; — CF is also finite, hence the composition
map is finite (composition of finite morphisms is always finite, as we

have seen). =
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Noether’s normalization lemma for non-irreducible varieties
The following version works for non-irreducible varieties.

PROPOSITION: Let X C C™ be an affine subvariety, and X; its irreducible
components. Denote by k£ the maximal transcendence degree for k(X;). Then
there exists a linear coordinate change z, := zz-—I—Z?;lf A4+ kZj+k» SUCh that

the projection I, : X — Ck to the first k arguments is a finite.

Proof. Step 1: The natural projection map
W Oy — 11 Ox/m
WESpeC(Qx)
IS injective by Hilbert Nullstellensatz.

Step 2: The natural projection map ¢ : Oy — EB(C)X%. IS injective, because
U factorizes through &. It is also finite, because Ox, is finitely generated
over Ox. Clearly, [[ X; = Spec(® Ox;), where [] denotes the disjoint union.

Step 3: Choose a coordinate projection I : C" — Ck which is finite on each

M
X;; such a projection exists by Corollary 1. The composition [[X; — X LN
Ck is finite, hence EB(C)XZ. is a finitely generated @Ck-module. Since @Ck IS
Noetherian, the submodule Ox C @ Oy, is also finitely generated. =
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Integral closure is finite

DEFINITION: Let A C B be rings. The set of all elements in B which are
integral over A is called the integral closure of A in B.

REMARK: The ring Cl[z1, ..., zn] is factorial by Gauss lemma, and therefore
integrally closed.

THEOREM: Let A be an integrally closed Noetherian ring, [K : k(A)] a
finite extension of its field of fractions, and B the integral closure of A in K.
Then B is finitely generated as an A-module.

Proof: Proven in Lecture 13. =

EXAMPLE: Let [K : C(z1,...,2n)] be a finite extension. Then the integral
closure of C|z1,...,2zn] INn X is finitely generated.
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Normalization

COROLLARY: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then the ring A is finitely generated.

Proof. Step 1: The variety X admits a finite, dominant map to C*k. Let A
be the integral closure of Clz1,...,2zn] in k(X); it is a finitely generated algebra
by the previous theorem. Then A is an integrally closed ring containing Oy
and with the same field of fractions.

Step 2: It remains to show that A = A. Since A D Ox D Clzy,...,2n], We
obtain that A is a finitely generated module over Ox. Therefore, A C A: since
A D Oy us integrally closed, A contains the integral closure of Oy C k(X),
which gives A D A. =

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then X := Spec(A) is called normalization of X.
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Normalization (2)

DEFINITION: Let X be an affine variety, and A the integral closure of its
ring of regular functions. Then X := Spec(A) is called normalization of X.

REMARK: The normalization map is finite and birational; X is normal if
for any finite, birational ¢ : X' — X, the map ¢ is an isomorphism.
Indeed, in this case Oy, D Ox is finite with the same field of fractions.

COROLLARY: Normalization of X is a finite, birational morphism X' — X
such that for any other finite, birational ¢ : X’ — X', the map ¢ is an
isomorphism. In particular, any birational, finite map X' — X with X’
normal is a normalization. =

REMARK: In other words, normalization is an initial object in the category

/
¢, such that ©6(C) is the set of the pairs (X’ X5 X) where the morphism
u is finite and birational, and morphisms of C are maps ¢ : X' — X" making
the following diagram commutative

X//
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Finite union of vector spaces over infinite fields

Proposition 1: Let V = k™ be a vector space over a field k£ of characteristic
O, and Wq,...,W, C V proper subspaces. Then V = [ W,.

Proof. Step 1: Replacing W; by a bigger subspace if necessarily, we can
assume all W; have codimension 1 and are defined by an equation \;(v) = 0.
Then X (= W; C V is an affine subvariety which is given by an equation
[IA; = 0.

Step 2: Let 21, ...,2zn, be coordinates in V, and z1, ..., z;. € k(X) a transcendence
basis (renumber z; if necessarily so that algebraically independent coordinates
go first). The equation [[A; = 0 gives an algebraic relation between z;,
restricted to X. Therefore k < n.

Step 3: After an appropriate linear change, we find a linear projection
n: W — Wy, with dimWj; = k, such that N : X — W is finite (Noether
normalization lemma).

Step 4: The fibers of 1 : X — W; are finite, but the fibers of I :

W — W7 are vector spaces, and they are infinite. m
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Primitive element theorem (reminder)

LEMMA: Let k£ be a field, and A := @?:1 k. Then A contains only finitely
many different k-algebras.

Proof: Let eq,...,en be the units in the summands of A. Then any udempotent
a € Ais asum of udempotents a = > e;a, but e¢;a belongs to the -th summand
of A. Then e;a = 0 or e;a = ¢;, because k contains only two udempotents.
This implies that any k-algebra A; C A is generated by an idempotent a,
which is sum of some qg;. =

THEOREM: Let [K : k] be a finite field extension in char = 0. Then there
exists a primitive element x € K, that is, an element which generates K.

Proof. Step 1: Let k be the algebraic closure of k. The number of
intermediate fields K D K’ D k is finite. Indeed, all such fields correspond
to k-subalgebras in K ®; k, and there are finitely many k-subalgebras in
K ®i k because K @k =@, k.

Step 2: Take for x an element which does not belong to intermediate sub-
fields K O K’ D k. Such an element exists by Proposition 1, because there
is a finite sets of K/, and they have positive codimension in K considered as
a vector space over k. Then x is primitive, because it generates a subfield
which is equal to K. =
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Emmy Noether’s postcard (1915)

Emmy Noether, a postcard sent to Ernst Fischer
April 10, 1915
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Emmy Noether (1882-1935)

M. B. W. TENT

—_
.

BN
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The Mother of Modern Algebra

Emmy Noether (1882-1935)
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Noether’s normalization lemma (second version)
The following theorem was proven by Emmy Noether in 1926.

THEOREM: (Noether’'s normalization lemma, second version)
Let X C C"™ be an irreducible, normal affine subvariety, and k the tran-
scendence degree of X (number of elements in the transcendence basis of
[£(X) : C]). Then there exists a variety X7 ¢ CFT1 given by a polynomial
equation P(t) = 0, where P(t) is a monic polynomial with coefficients in
Clz1, ..., 2¢], such that X is isomorphic to the normalization of X;.

Proof. Step 1: Let X C C", with coordinates zq,...,zn, and z1,...,z; a tran-
scendence basisin k(X). Then a general linear combination 7 := Zf;% Aot i Zfi
is primitive in [k(X) : k(z1,...,2,)]. Indeed, any proper subfield K C k(X)
does not contain the k-subspace W generated by zp41,...,2n, beCause W
generates K multiplicatively. There are only finitely many subfields K; with
k(z1,...,2r) C K; C k(X). Since W ¢ K;, one has W ¢ U K; (Proposition 1).
Any element r € W\ | K; is primitive.
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Noether’s normalization lemma (2)

THEOREM: (Noether’'s normalization lemma, second version)
Let X C C"™ be an irreducible, normal affine subvariety, and k the tran-
scendence degree of X (number of elements in the transcendence basis of
[(X) : C]). Then there exists a variety X1 Cc Ck+1 given by a polynomial
equation P(t) = 0, where P(t) is a monic polynomial with coefficients in
Clz1, ..., z¢], such that X is isomorphic to the normalization of X;.

Step 2: Let My ; : C?—CFTL be the projection to the coordinates
z1,.--, 2k, T, Chosen in Step 1, and X its image, that is, X7 = Spec(B), where
B C Ox is the subalgebra generated by zq,..., 2z, 7. After an appropriate lin-
ear change of coordinates, we can assume that ;4 : X — X, is finite
(Corollary 1) and birational (Step 1). Also, Ox, = Clzq, ..., 2;,t]/(P) where
P(z1,...,z,t) is the monic polynomial constructed in Noether normal-
ization lemma, version 1.

Step 3: The projection X — X4 is birational and finite, and X is normal.
Therefore, X is the normalization of X1. m
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