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Algebraic dimension

DEFINITION: Let A ⊃ C[t1, ..., tn] be a ring without zero divisors. Assume

that the extension [k(A) : C(t1, ..., tn)] is finite. Then n is called the tran-

scence degree of A.

REMARK: Let M be an irreducible affine variety, and π : M −→ Cn the

finite, dominant map constructed in Noether’s normalization lemma. By

construction, n is equal to the transcendence degree of [k(M) : C].

DEFINITION: Let M be an irreducible affine variety. Algebraic dimension

a(M) is the transcendence degree of [k(M) : C].
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Divisors in Cn

DEFINITION: Let X be an affine variety, and f ∈ OX a regular function

which does not vanish on any of irreducible components of X. The zero set

of f is called a principal divisor on X. Its irreducible components are called

divisors on X.

LEMMA: Any divisor in Cn is principal.

Proof: Let I = (f) ⊂ C[t1, ..., tn] be a principal ideal, f =
∏
i f
αi
i be the prime

decomposition of f , and V(f), V(fi)
be the corresponding zero sets. The

ideals (fi) are prine, because C[t1, ..., tn] Since VI =
⋃
V(fi)

, and all the ideals

(fi) are prime, the decomposition VI =
⋃
V(fi)

coincides with the irreducible

decomposition of V(f). We obtain that any irreducible component of V(f)
is principal.
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Algebraic dimension of a divisor

Proposition 1: Let D be an irreducible divisor in Cn. Then a(D) = n−1.

Proof: Let D = V(f), where f is an irreducible polynomial (it exists by the

previous lemma). Then f = 0 gives an algebraic relation between the

coordinate functions, hence the maximal number of algebraically inde-

pendent coordinate functions on D is n − 1. Moreover, for each of the

coordinates, say, tn, such that f depends non-trivially on tn, its image in k(D)

is a root of a polynomial with coefficients in C[t1, ..., tn−1]. Therefore k(D) is

a finite extension of C(t1, ..., tn−1).
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Krull dimension

REMARK: Length of a chain A1 ⊂ A2 ⊂ A3 ⊂ ... ⊂ An is n− 1, that is, the

number of ⊂ signs.

DEFINITION: Krull dimension of a ring A is the maximal possible length

of a chain of prime ideals 0 6= p1 ( p2... ( pn ( A

DEFINITION: Krull dimension of a variety X is the maximal possible length

of a chain of non-empty, irreducible, distinct subvarieties X1 ( ... ( Xn.

Today we are going to prove the following theorem

THEOREM: For any affine variety, its algebraic dimension is equal to its

Krull dimension.

5



Commutative Algebra, lecture 17 M. Verbitsky

Wolfgang Krull (1899-1971)

Wolfgang Krull (1899-1971),
photo by Paul Halmos,

Seventh Brazilian Mathematics Colloquium
in Poços de Caldas, Brazil, July 1969,
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Local rings and Nakayama lemma

DEFINITION: A ring A is called local if it has only one maximal ideal.

DEFINITION: Let p ⊂ A be a prime ideal, and S ⊂ A its complement.

Localization of A in p is A[S−1].

CLAIM: Localization Ap of A in p is local.

Proof: Any x ∈ A\p is invertible, hence p is a maximal ideal, containing all

ideals in A.

THEOREM: (Nakayama’s lemma for local rings)

Let A be a Noetherian local ring, p its maximal ideal, and M a finitely gener-

ated A-module. Then M ) pM .

Proof: For any non-trivial ideal a ⊂ A, Nakayama lemma claims that

aM = M implies that (1 + a)M = 0, for some a ∈ a. For any a ∈ p,

1 + a is invertible, hence M = 0.
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Finite ring extensions and prime ideals: going down

DEFINITION: Let B ⊃ A be a ring, which is finitely generated as an A-

module. In this case, we say that B is finite extension of A.

Lemma 1: Let B ⊃ A be a extension of a ring A without zero divisors, and

q ⊂ B a non-zero prime ideal. Them p := q ∩A is nonzero.

Proof: Consider the ring Ap = A[S−1] localized in the set S of all s /∈ p, and

let Bp := B[S−1]. Then Bp ⊃ Ap is a finite Ap-module. If p = 0, Ap is a field,

and then Bp is also a field as follows from the classification of semisimple

Artinian algebras over a field. However, Bp contains a non-trivial ideal q 6= 0,

hence it cannot be a field.
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Finite ring extensions and prime ideals: going up

Lemma 2: Let B ⊃ A be a finite extension of a Noetherian ring A, and p ⊂ A
a prime ideal. Then there exists finitely many prime ideals q ⊂ B such

that p = q ∩A.

Proof. Step 1: As above, consider the ring Ap = A[S−1] localized in the set

S all s /∈ p. The kernel of the natural map A−→Ap/p is p. Indeed, the map

A/p−→Ap/p has no kernel because p is prime, and the kernel of A−→A/p is

p.

Step 2: Let Bp := B[S−1]. By Nakayama’s lemma, Bp 6= pBp. Then Bp/p =

Bp⊗AAp/p is a non-zero, finite-dimensional ring over the field Ap/p. Let q̃ be

any prime ideal in Bp/p (there are finitely many prime ideals by classification

of Artinian algebras), and let q be the preimage of q̃ inder the natural map

B −→Bp/p. Then q is prime, and q∩A is mapped to 0 under the natural map

A−→Ap/p, hence q ∩A = p (Step 1).
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Cohen-Seidenberg theorems

THEOREM: (Cohen-Seidenberg theorem)

Let B ⊃ A be a finite Noetherian ring over A, and q1 ( q2... ( qn ( B be a

chain of prime ideals. Denote by pi the ideal pi ∩ A ⊂ A; it is clearly prime.

Then

(i) p1 ( p2... ( pn ( A (distinct prime ideals remain distinct)

(ii) Any chain of prime ideals p1 ( p2... ( pn ( A is obtained this way.

Proof of (i): Suppose that pi = pi−1. Replacing A by A/pi−1 and B by

B/qi−1, we reduce the statement of (i) to Lemma 1.

Proof of (ii): Existence of q1 follows from Lemma 2. Using induction, we

may assume that q1 ( q2 ( ... ( qr is already chosen. To prove the induction

step, we need to chose a prime ideal qr+1 in B/qr such that qr+1∩A/qr = pr+1.

This is again Lemma 2.
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Irving S. Cohen and Abraham Seidenberg

Irving S. Cohen and Abraham Seidenberg, ”Prime ideals and integral depen-

dence”, 1946, Bull. Amer. Math. Soc. 52 (4): 252-261

Irvin Sol Cohen
(1917-1955)

Abraham Seidenberg
(1916-1988)
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Krull dimension is invariant under finite morphisms

COROLLARY: Let X −→ Y be a finite, dominant morphism of irreducible

affine varieties. Then the Krull dimension of X is equal to Krull dimen-

sion of Y .

Proof: Any chain of prime ideals in OY ⊂ OX can be lifted to OX by Cohen-

Seidenberg; any chain of distinct prime ideals in OX intersected with OY gives

a chain of distinct prime ideals in OY , again by Cohen-Seidenberg.
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The Krull dimension and the algebraic dimension

THEOREM: For any affine variety X, its algebraic dimension a(X) is

equal to its Krull dimension dimX.

Proof. Step 1: By Noether’s lemma, there exists a finite, dominant map

X −→ Cd, where d = a(X) is the algebraic dimension. It remains to show that

the Krull dimension of Cd is d.

Step 2: Any prime ideal which is not principal contains an irreducible poly-

nomial, hence it contains a principal prime ideal. This implies that in any

maximal chain 0 ( p1 ( p2... of prime ideals in OCn, the ideal p1 is prin-

cipal.

Step 3: We obtained that dimCn = 1 + dimD, where D is an irreducible

divisor. Using induction in dimX, we may assume that dimY = a(Y ) for

any affine variety of algebraic dimension < n. Then dimD = a(D) = n − 1

(Proposition 1), giving dimCn = dimD + 1 = n.
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The proof of Hilbert Nullstellensatz

Using Noether’s normalization lemma, we can prove the result which can be

used to deduce Hilbert Nullstellensatz. In Lecture 1, we proved this theorem

using the set theory.

THEOREM: Let F be a finitely generated algebra over an algebraically

closed field k. Assume that F is a field. Then F = k.

Proof: Noether normalization lemma implies that there exists an embedding

k[t1, t2, ..., tn] ↪→ F such that F is finite generated as k[t1, t2, ..., tn]-module. By

Lemma 1, this implies that every non-zero prime ideal in k[t1, t2, ..., tn] is

extended to a non-zero prime ideal in F . However, F is a field, haence

it has no non-zero ideals, and n = 0. Therefore, F is a finite extension of k.

Since k is algebraically closed, any finite extension of k is trivial.

14


