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Discrete valuations

DEFINITION: Let K be a field. A discrete valuation on K is a surjec-
tive map v : (K\0) — Z such that v(zy) = v(z) + v(y) and v(xz + y) >
min(v(x),v(y)). The valuation ring of vis {r € K | v(x) > 0}.

EXAMPLE: Let R be a factorial ring, and p € R a prime. Given x € k(R),
write the prime decomposition x = Hz-p,?i (here a; € Z and can be negative,
because x belongs to the field of fractions). Take vp,(x) := a1. This function
is called p-adic valuation. The corresponding valuation ring is all fractions
% where a and b € R are coprime and b is not divisible by p.
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Discrete valuation rings

DEFINITION: A ring A without zero divisors is a discrete valuation ring
if k(A) admits a discrete valuation such that A is its valuation ring.

Proposition 1: A discrete valuation ring is local, Noetherian, integrally
closed, all its ideals are principal, and the Krull dimension of A is 1.

Proof. Step 1: Clearly, all x € A which satisfy v(x) = 0 are invertible.
Therefore, the ideal p:={zx € A | v(x) > 0} is maximal. Since all elements
which don’t belong to p are invertible, A is local.

Step 2: Let p € A be an element which satisfies v(p) = 1. Then foranyz € A
such that & = v(z), the element z1 ;= zp—* belongs to A and is invertible.
Then, = = pFz;. We obtain that any ideal which contains p*¥ contains all
elements x € A with v(z) > k.

Step 3: Let I C A be an ideal, and k := min,c;v(z). By Step 2, I = (p¥),
hence [ is a principal ideal. The only chain of ideals which exists in A is
(pF1) C (pF2) C (p*3) C ... with k1 > ko > k3 > .... and it terminates, because
all k; are positive integers. Therefore, A is Noetherian. It is integrally closed

because it is factorial. m
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Many ways to characterize a discrete valuation ring

THEOREM: Let A be a Noetherian local ring without zero divisors, m its
maximal ideal, and k := A/m its residue field. Assume that A has Krull
dimension 1. Then the following are equivalent.

(i) A is a discrete valuation ring.

(ii) A is integrally closed.

(iii) m is a principal ideal.

(iv) dimk% =1.

(v) Every non-zero ideal of A is a power of m.

(vi) There exists p € A such that every non-zero ideal of A is generated by
pP, for some k € >0,

I will prove this theorem later today.
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Fractional ideals: basic properties

DEFINITION: Let R be a ring without zero divisors, and k(R) its fraction
field. A non-zero R-submodule I C k(R) is called a fractional ideal of R if
for some a € R, one has al C R.

CLAIM: Let R be a Noetherian ring, and I C k(R) an R-submodule. Then I
IS a fractional ideal if and only if I is finitely generated.

Proof: Let I be finitely generated by the collection {% € k(R)}, with a;,b; € R.
Then [[; 5,1 C R. Conversely, if al C R, then al is finitely generated, because
al is an ideal in a Noetherian ring. =

DEFINITION: Let I7,I> be fractional ideals. Then the set I, of products
of elemens in I1, I> is a fractional ideal.

CLAIM: For any two fractional ideals I1, I>, the intersection /1 N1y is non-
empty, hence I; NI, is also a fractional ideal.

Proof: Since al; C R, the intersection I; " R is non-empty. Let a; € I, N R.
Then ajay € RI; = I;, hence ajap € I1NIy. =
5
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Fractional ideals: I=! and R(I)

CLAIM: Let I C R be a fractional ideal. Then thesets Il :={x € R | 2l C
R} and R(I) := {x € k(R) | =zl C R} are fractional ideals. Moreover, for
any fractional ideal Iy, 1>, the R-module J = {x € k(R) | xzI; C I»} is a
fractional ideal.

Proof. Step 1: Let a,b € R\O be elements such that al{ C R and b € I N R.
Then abl; C bR C I, hence J is non-empty.

Step 2: For any non-zero elements c¢,d € R such that c € I, dI, C R, and
any x € J, we have cdx = d(xc) C dI> C R, hence cdx € R. =

Claim 1: For any fractional ideal I, one has R(I) D R D II~1. 1If, in
addition, I C R, then I—1 D R.

Proof: R(I) D R because I is R-module and R D II~1 because al C R for any
a €Il Finally, I C R implies that any = € R satisfies I C R, hence z € I 1.
u
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Integrally closed local rings of Krull dimension 1

Proposition 2: Let A be an integrally closed Noetherian local ring of Krull
dimension 1. Then A is a discrete valuation ring.

REMARK: The converse statement follows from Proposition 1.

Proof. Step 1: Let I C k(R) be a fractional ideal, and R(I) C k(R) the ring
of all x € k(R) such that I C I. Since R(I) C Hompg(I,I), it is finitely
generated as R-module, hence R(I) = R.

Step 2: Since all ideals of R are contained in m and contain O and dimR =1,
the only maximal chain of prime ideals in R is O C m. Therefore, R has only
two prime ideals, m and O.

Step 3: Let m be the maximal ideal of R. We are going to show that the
fractional ideal m~ ! > R is not equal to R. Consider the set & of all ideals
I C R such that 71 2 R; this set includes all principal ideals, hence it is
non-empty. An increasing chain of ideals in R terminates. Let J € & be the
maximal (in the sense of inclusion) ideal which satisfies J1 2 R. By Step 2,

to show that m—! £ R, it suffices to prove that J is prime.
7
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Integrally closed local rings of Krull dimension 1 (2)

Step 4: By absurd, assume that z,y € R\J, and zy € J. Take z € J 1\R.
Then zy(xR+ J) C R, because z(zyR) € zJ C R and yzJ > yR C R. Since the
ideal J; ;= 2R+ J &€ &, zyJy C R implies zy € R. Then z(yR+ J) C R, giving
(yR + J)~1 % R, a contradiction. We proved that m—! D R.

Step 5: Claim 1 implies that R D mm ! D mR = m. However, mm—1 = m
implies m™1 ¢ R(m) = R (Step 1), hence mm~—1 = R.

Step 6: By Krull lemma, N, m! = 0. Then m %= m2. Choose p € m\m2. Then
pm—1 C R. Since p ¢ m? and m 1m?2 = m, this implies pm~1 ¢ m. Then
pm~—! C R is a submodule not contained in m, hence pm~! = R and
pR = m.

Step 7: Since ;m! = 0, any = € R belongs to m®\m¢*! for some d. Then
px € R\m is invertible, hence R is factorial, and every element of k(R) is
represented as z = p%u, where u € R is invertible. Define v : k(R) — Z by
v(z) =d. Then R=1r"1(0), and R is discrete valuation ring. =

3
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Residue fields of discrete valuation rings

Claim 2 Let R be a discrete valuation ring, and m its maximal ideal, and
k := R/m its residue field. Then m?/m?*+! is 1-dimensional as a k-vector
space for all d ¢ 7>9.

Proof: Let p be the generator of m, and Lpd(:z;) — pdaz. Then Lpd : R +— md
is an isomorphism which maps m to m¢+1. =

REMARK: For some discrete valuation rings, the map R — R/m = k£ has
a section k — R. This is true, for example, for the ring CJ[¢] localized in (¢);
in this case, k = C (prove this). For other rings, such section does not exist;
for example, consider the ring Z localized in (p); in this case, the residue field
in Z/pZ (prove this).
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Many ways to characterise a discrete valuation ring

THEOREM: Let R be a Noetherian local ring without zero divisors, m its
maximal ideal, and k£ := R/m its residue field. Assume that R has Krull
dimension 1. Then the following are equivalent.

(i) R is a discrete valuation ring.

(ii) R is integrally closed.

(iii) m is a principal ideal.

(iv) dimk% = 1.

(v) Every non-zero ideal of R is a power of m.

(vi) There exists p € R such that every non-zero ideal of R is generated by
pP, for some k € 72>0.

Proof. Step 1: (i) implies (ii), (iii), (v) and (vi) as follows from Proposition
1. (ii) implies (i) by Proposition 2. (i) implies (iv) by Claim 2.

Step 2: Assume (iii), and let (p) = m. Then m~ 1 =p~1R and mm—! = R,
hence for any z € m*\mFt1 the element p—%x € R\m is invertible. This implies
that R is factorial, hence integrally closed. We proved that (iii) implies (ii)
and (i). Also, (v) implies (vi) which implies that R is factorial. We proved
that all (i)-(vi) are equivalent, except (iv).
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Step 3: Now we prove that (iv) implies (iii). Let p be a generator of m
modulo m2. Then the natural map (g?n >£‘2 IS surjective. By Nakayama
lemma, for any morphism ¢ : M — N of finitely generated modules over a
local ring, surjectivity of the map ¢ : m% > m]g\f implies the surjectivity of ¢,

hence m is a principal ideal. =
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