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Discrete valuations

DEFINITION: Let K be a field. A discrete valuation on K is a surjec-

tive map ν : (K\0)−→ Z such that ν(xy) = ν(x) + ν(y) and ν(x + y) >

min(ν(x), ν(y)). The valuation ring of ν is {x ∈ K | ν(x) > 0}.

EXAMPLE: Let R be a factorial ring, and p ∈ R a prime. Given x ∈ k(R),

write the prime decomposition x =
∏
i p
αi
i (here αi ∈ Z and can be negative,

because x belongs to the field of fractions). Take νp1(x) := α1. This function

is called p-adic valuation. The corresponding valuation ring is all fractions
a
b where a and b ∈ R are coprime and b is not divisible by p.
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Discrete valuation rings

DEFINITION: A ring A without zero divisors is a discrete valuation ring
if k(A) admits a discrete valuation such that A is its valuation ring.

Proposition 1: A discrete valuation ring is local, Noetherian, integrally
closed, all its ideals are principal, and the Krull dimension of A is 1.

Proof. Step 1: Clearly, all x ∈ A which satisfy ν(x) = 0 are invertible.
Therefore, the ideal p := {x ∈ A | ν(x) > 0} is maximal. Since all elements
which don’t belong to p are invertible, A is local.

Step 2: Let p ∈ A be an element which satisfies ν(p) = 1. Then for any x ∈ A
such that k = ν(x), the element x1 := xp−k belongs to A and is invertible.
Then, x = pkx1. We obtain that any ideal which contains pk contains all
elements x ∈ A with ν(x) > k.

Step 3: Let I ⊂ A be an ideal, and k := minx∈I ν(x). By Step 2, I = (pk),
hence I is a principal ideal. The only chain of ideals which exists in A is
(pk1) ( (pk2) ( (pk3) ( ... with k1 > k2 > k3 > .... and it terminates, because
all ki are positive integers. Therefore, A is Noetherian. It is integrally closed
because it is factorial.
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Many ways to characterize a discrete valuation ring

THEOREM: Let A be a Noetherian local ring without zero divisors, m its

maximal ideal, and k := A/m its residue field. Assume that A has Krull

dimension 1. Then the following are equivalent.

(i) A is a discrete valuation ring.

(ii) A is integrally closed.

(iii) m is a principal ideal.

(iv) dimk
m
m2 = 1.

(v) Every non-zero ideal of A is a power of m.

(vi) There exists p ∈ A such that every non-zero ideal of A is generated by

pk, for some k ∈ Z>0.

I will prove this theorem later today.
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Fractional ideals: basic properties

DEFINITION: Let R be a ring without zero divisors, and k(R) its fraction

field. A non-zero R-submodule I ⊂ k(R) is called a fractional ideal of R if

for some a ∈ R, one has aI ⊂ R.

CLAIM: Let R be a Noetherian ring, and I ⊂ k(R) an R-submodule. Then I

is a fractional ideal if and only if I is finitely generated.

Proof: Let I be finitely generated by the collection {aibi ∈ k(R)}, with ai, bi ∈ R.

Then
∏
i biI ⊂ R. Conversely, if aI ⊂ R, then aI is finitely generated, because

aI is an ideal in a Noetherian ring.

DEFINITION: Let I1, I2 be fractional ideals. Then the set I1I2 of products

of elemens in I1, I2 is a fractional ideal.

CLAIM: For any two fractional ideals I1, I2, the intersection I1∩ I2 is non-

empty, hence I1 ∩ I2 is also a fractional ideal.

Proof: Since aIi ⊂ R, the intersection Ii ∩ R is non-empty. Let ai ∈ Ii ∩ R.

Then a1a2 ∈ RIi = Ii, hence a1a2 ∈ I1 ∩ I2.
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Fractional ideals: I−1 and R(I)

CLAIM: Let I ⊂ R be a fractional ideal. Then the sets I−1 := {x ∈ R | xI ⊂
R} and R(I) := {x ∈ k(R) | xI ⊂ R} are fractional ideals. Moreover, for

any fractional ideal I1, I2, the R-module J := {x ∈ k(R) | xI1 ⊂ I2} is a

fractional ideal.

Proof. Step 1: Let a, b ∈ R\0 be elements such that aI1 ⊂ R and b ∈ I2 ∩R.

Then abI1 ⊂ bR ⊂ I2, hence J is non-empty.

Step 2: For any non-zero elements c, d ∈ R such that c ∈ I1, dI2 ⊂ R, and

any x ∈ J, we have cdx = d(xc) ⊂ dI2 ⊂ R, hence cdx ∈ R.

Claim 1: For any fractional ideal I, one has R(I) ⊃ R ⊃ II−1. If, in

addition, I ⊂ R, then I−1 ⊃ R.

Proof: R(I) ⊃ R because I is R-module and R ⊃ II−1 because aI ⊂ R for any

a ∈ I−1. Finally, I ⊂ R implies that any x ∈ R satisfies xI ⊂ R, hence x ∈ I−1.
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Integrally closed local rings of Krull dimension 1

Proposition 2: Let A be an integrally closed Noetherian local ring of Krull

dimension 1. Then A is a discrete valuation ring.

REMARK: The converse statement follows from Proposition 1.

Proof. Step 1: Let I ⊂ k(R) be a fractional ideal, and R(I) ⊂ k(R) the ring

of all x ∈ k(R) such that xI ⊂ I. Since R(I) ⊂ HomR(I, I), it is finitely

generated as R-module, hence R(I) = R.

Step 2: Since all ideals of R are contained in m and contain 0 and dimR = 1,

the only maximal chain of prime ideals in R is 0 ( m. Therefore, R has only

two prime ideals, m and 0.

Step 3: Let m be the maximal ideal of R. We are going to show that the

fractional ideal m−1 ⊃ R is not equal to R. Consider the set S of all ideals

I ⊂ R such that I−1 ) R; this set includes all principal ideals, hence it is

non-empty. An increasing chain of ideals in R terminates. Let J ∈ S be the

maximal (in the sense of inclusion) ideal which satisfies J−1 ) R. By Step 2,

to show that m−1 6= R, it suffices to prove that J is prime.
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Integrally closed local rings of Krull dimension 1 (2)

Step 4: By absurd, assume that x, y ∈ R\J, and xy ∈ J. Take z ∈ J−1\R.

Then zy(xR+ J) ⊂ R, because z(xyR) ∈ zJ ⊂ R and yzJ 3 yR ⊂ R. Since the

ideal J1 := xR + J /∈ S, zyJ1 ⊂ R implies zy ∈ R. Then z(yR + J) ⊂ R, giving

(yR+ J)−1 6= R, a contradiction. We proved that m−1 ) R.

Step 5: Claim 1 implies that R ⊃ mm−1 ⊃ mR = m. However, mm−1 = m

implies m−1 ⊂ R(m) = R (Step 1), hence mm−1 = R.

Step 6: By Krull lemma,
⋂
im

i = 0. Then m 6= m2. Choose p ∈ m\m2. Then

pm−1 ⊂ R. Since p /∈ m2 and m−1m2 = m, this implies pm−1 6⊂ m. Then

pm−1 ⊂ R is a submodule not contained in m, hence pm−1 = R and

pR = m.

Step 7: Since
⋂
im

i = 0, any x ∈ R belongs to md\md+1 for some d. Then

p−dx ∈ R\m is invertible, hence R is factorial, and every element of k(R) is

represented as x = pdu, where u ∈ R is invertible. Define ν : k(R)−→ Z by

ν(x) = d. Then R = ν−1(0), and R is discrete valuation ring.
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Residue fields of discrete valuation rings

Claim 2 Let R be a discrete valuation ring, and m its maximal ideal, and

k := R/m its residue field. Then md/md+1 is 1-dimensional as a k-vector

space for all d ∈ Z>0.

Proof: Let p be the generator of m, and Lpd(x) := pdx. Then Lpd : R 7→ md

is an isomorphism which maps m to md+1.

REMARK: For some discrete valuation rings, the map R−→R/m = k has

a section k −→R. This is true, for example, for the ring C[t] localized in (t);

in this case, k = C (prove this). For other rings, such section does not exist;

for example, consider the ring Z localized in (p); in this case, the residue field

in Z/pZ (prove this).
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Many ways to characterise a discrete valuation ring

THEOREM: Let R be a Noetherian local ring without zero divisors, m its

maximal ideal, and k := R/m its residue field. Assume that R has Krull

dimension 1. Then the following are equivalent.

(i) R is a discrete valuation ring.

(ii) R is integrally closed.

(iii) m is a principal ideal.

(iv) dimk
m
m2 = 1.

(v) Every non-zero ideal of R is a power of m.

(vi) There exists p ∈ R such that every non-zero ideal of R is generated by

pk, for some k ∈ Z>0.

Proof. Step 1: (i) implies (ii), (iii), (v) and (vi) as follows from Proposition

1. (ii) implies (i) by Proposition 2. (i) implies (iv) by Claim 2.

Step 2: Assume (iii), and let (p) = m. Then m−1 = p−1R and mm−1 = R,

hence for any x ∈ mk\mk+1, the element p−kx ∈ R\m is invertible. This implies

that R is factorial, hence integrally closed. We proved that (iii) implies (ii)

and (i). Also, (v) implies (vi) which implies that R is factorial. We proved

that all (i)-(vi) are equivalent, except (iv).
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Step 3: Now we prove that (iv) implies (iii). Let p be a generator of m

modulo m2. Then the natural map (p)
(p)m −→

m
m2 is surjective. By Nakayama

lemma, for any morphism ϕ : M −→N of finitely generated modules over a

local ring, surjectivity of the map ϕ : M
mM −→

N
mN implies the surjectivity of ϕ,

hence m is a principal ideal.
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