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Discrete valuations

DEFINITION: Let K be a field. A discrete valuation on K is a surjec-

tive map ν : (K\0)−→ Z such that ν(xy) = ν(x) + ν(y) and ν(x + y) >

min(ν(x), ν(y)). The valuation ring of ν is {x ∈ K | ν(x) > 0}.

EXAMPLE: Let R be a factorial ring, and p ∈ R a prime. Given x ∈ k(R),

write the prime decomposition x =
∏
i p
αi
i (here αi ∈ Z and can be negative,

because x belongs to the field of fractions). Take νp1(x) := α1. This function

is called p-adic valuation. The corresponding valuation ring is all fractions
a
b where a and b ∈ R are coprime and b is not divisible by p.

DEFINITION: A ring R without zero divisors is a discrete valuation ring

(DVR) if k(R) admits a discrete valuation such that R is its valuation ring.

REMARK: Local ring of Krull dimension 1 and without zero divisors has

only two prime ideals. Conversely, a ring which has only two prime ideals

0 ( m has Krull dimension 1. A DVR has only two prime ideals, 0 and

m := ν−1(Z>0), hence it is local and has Krull dimension 1.
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Discrete valuation rings and principal ideals

Claim 1: Let R be a Noetherian local ring without zero divisors, and m its

maximal ideal. Then m is principal if and only if R is a discrete valuation

ring.

Proof: Let R be a DVR. Consider an element p with ν(p) = 1. For any x ∈ R
with ν(x) = k, one has x = upk, where u is invertible, hence all ideals of R

are principal.

Conversely, if m is generated by p, any element x ∈ R which is not divisible

by p is invertible, hence x = upk, where u is invertible. Then R is the DVR

for the p-adic valuation.

Corollary 1: A discrete valuation ring is local, Noetherian, integrally

closed, all its ideals are principal, and the Krull dimension of R is 1.
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Many ways to characterise a discrete valuation ring

THEOREM: Let R be a Noetherian local ring without zero divisors, m its

maximal ideal, and k := R/m its residue field. Assume that R has Krull

dimension 1. Then the following are equivalent.

(i) R is a discrete valuation ring.

(ii) R is integrally closed.

(iii) m is a principal ideal.

(iv) dimk
m
m2 = 1.

(v) Every non-zero ideal of R is a power of m.

(vi) There exists p ∈ R such that every non-zero ideal of R is generated by

pk, for some k ∈ Z>0.

Proof: Later today.
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Projective R-modules

DEFINITION: An R-module M is called free if M is a direct sum of several
copies of R (possibly infinitely many copies). It is called projective if it is a
direct summand of a free R-module.

PROPOSITION: An R-module P is projective if for every surjective homo-
morphism ϕ : A−→B of R-modules and every homomorphism ψ : P −→B,
the map ψ can be factorized through ϕ making the following diagram
commutative:

A

P
ψ

>

µ
>

B

ϕ

∨

Proof: Let ϕ : F −→ P be a surjective map from a free module to P and
ψ = ϕ. The map ψ can be factorized through ϕ if and only if ψ admits

a section µ, which gives a decomposition F = kerψ ⊕ imµ.

Conversely, if P is a direct summand of F = P ⊕P1, we can extend ψ from P

to a free R-module F = P ⊕ P1. Then the map µ can be defined on the

generators of F and restricted to P ⊂ F .
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Dual basis theorem

THEOREM: (Dual basis theorem) Let M be an R-module. Consider a

natural map Ψ : HomR(M,R)⊗RM −→ HomR(M,M). Then the following

are equivalent.

(i) Ψ is an isomorphism.

(ii) IdM ∈ im(Ψ).

(iii) M is projective and finitely generated.

Proof: Clearly, Ψ is an isomorphism for any free finitely generated R-module

M , hence for any direct sum component of a free finitely generated R-module.

Therefore, (iii) ⇒ (i) ⇒ (ii).

The condition (ii) is equivalent to the following. There exists a finite collection

of maps fi : M −→R, i = 1, ..., n and a finite set mi ∈M , i = 1, ..., n such that

for any m ∈M one has
∑n
i=1 fi(m)mi = m. In particular, (ii) implies that M

is finitely generated.

Let F = 〈mi〉 be a free module generated by {mi}, and f(m) :=
∑n
i=1 fi(m)mi.

Then f is a section of the natural projection F −→M , hence M is projective.

This gives (ii) ⇒ (iii).
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Projective modules in local rings

PROPOSITION: Let P be a finitely generated projective module over a

local ring R. Then P is a free R-module.

Proof: Denote by m the maximal ideal of R. Let e1, ..., en be a set of elements

of P\mP generating P
mP . We chose ei in such a way that their images in P

mP
are linearly independent over the field R/m. By Nakayama’s lemma, {ei}
generate P . Since P is projective, the projection from the free module F :=

〈e1, ..., em〉 −→ P has a section ψ : P −→ 〈e1, ..., em〉. Since imψ modulo mF

generates F
mF , we have F = imψ, and P is a free R-module.
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Fractional ideals (reminder)

DEFINITION: Let R be a ring without zero divisors, and k(R) its fraction
field. A non-zero R-submodule I ⊂ k(R) is called a fractional ideal of R if
for some a ∈ R, one has aI ⊂ R.

CLAIM: Let R be a Noetherian ring, and I ⊂ k(R) an R-submodule. Then I

is a fractional ideal if and only if I is finitely generated.

DEFINITION: Let I1, I2 be fractional ideals. Then the set I1I2 of products
of elemens in I1, I2 is a fractional ideal.

CLAIM: For any two fractional ideals I1, I2, the intersection I1∩ I2 is non-
empty, hence I1 ∩ I2 is also a fractional ideal.

CLAIM: Let I ⊂ R be a fractional ideal. Then the sets I−1 := {x ∈ R | xI ⊂
R} and R(I) := {x ∈ k(R) | xI ⊂ R} are fractional ideals. Moreover, for
any fractional ideal I1, I2, the R-module J := {x ∈ k(R) | xI1 ⊂ I2} is a
fractional ideal.

CLAIM: For any fractional ideal I, one has R(I) ⊃ R ⊃ II−1. If, in addition,
I ⊂ R, then I−1 ⊃ R.
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Invertible fractional ideals

DEFINITION: A fractional ideal I ⊂ k(R) is called invertible if II−1 = R.

THEOREM: A fractional ideal is invertible if and only if it is projective,

and it is then finitely generated.

Proof. Step 1: I−1I 3 1 implies IdI ∈ HomR(I, R) ⊗R I, which implies

projectivity by the Dual Basis Theorem.

Step 2: Consider an R-linear map ϕ : I1 −→ I2 If we tensor ϕ it with k(R),

we obtain a k(R)-linear map I1 ⊗R k(R)−→ I2 ⊗R k(R), with Ii ⊗R k(R) =

k(R). Clearly, Homk(R)(k(R), k(R)) = k(R). Therefore, ϕ it is expressed

as v −→ αv, for some α ∈ k(R). This gives I−1 = HomR(I, R).

Step 3: If I is projective, then IdI ∈ HomR(I, R) ⊗R I, hence I−1I 3 1, and

I−1I = R.

REMARK: The multiplication of fractional ideals is associative, and this

multiplication induces the structure of an abelian group on the set of

invertible fractional ideals in R.
9



Commutative Algebra, lecture 19 M. Verbitsky

Radical ideals in local rings of Krull dimension 1

Recall that the radical
√
I of an ideal I ⊂ R is the set of all x ∈ R such that

xn ∈ I for some n > 0. An ideal I is called radical if I =
√
I.

CLAIM: Let R be a local ring of Krull dimension 1. Then any non-zero

radical ideal of R is its maximal ideal.

Proof: Let I ⊂ R be a non-zero radical ideal. Then 0 in R/I is an intersection

of all prime ideals in R/I. In other words, I is an intersection of prime ideals

containing I. Since R is a local ring of Krull dimension 1 and without zero

divisors, it has only two prime ideals. Since I is non-zero, there exists only

one prime ideal m ⊂ R containing I, hence I = m.

Corollary 2: Let R be a Noetherian local ring of Krull dimension 1, and m

its maximal ideal. Then for any t ∈ m there exists n such that mn ⊂ (t).

Proof: The radical of (t) is m, by the previous claim.

10



Commutative Algebra, lecture 19 M. Verbitsky

Local rings of Krull dimension 1 with projective maximal ideal

PROPOSITION: Let R be a be a Noetherian local ring, and m its maximal

ideal. Assume that m is projective as an R-module. Then R is DVR.

Proof: Sunce R is Noetherian and local, m is free. Choose the elements

p1, p2, ..., pn freely generating m. Then m =
⊕
i(pi), which is impossible, unless

n = 1, because p1p2 ∈ (p1) ∩ (p2). Therefore, m is a principal ideal, and R

is DVR by Corollary 1.

Corollary 3: Let R be a Noetherian local ring, and m its maximal ideal.

Assume that m is invertible as a fractional ideal. Then R is DVR.

Proof: Invertible fractional ideals are projective.
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Integrally closed local rings of Krull dimension 1

Proposition 2: Let R be an integrally closed Noetherian local ring of Krull
dimension 1. Then R is a discrete valuation ring.

REMARK: The converse statement is implied by Corollary 1.

Proof. Step 1: Let I ⊂ k(R) be a fractional ideal, and R(I) ⊂ k(R) the ring
of all x ∈ k(R) such that xI ⊂ I. Since R(I) ⊂ HomR(I, I), it is finitely
generated as R-module, hence R(I) = R.

Step 2: Let m be the maximal ideal of R. Then R ⊂ mm−1 ⊂ m. Since any
element of R\m is invertible, we have either mm−1 = R or mm−1 = m. In the
second case, m−1 = R by Step 1, because in this case m−1 ⊂ R(m). In the
first case, the fractional ideal m is invertible.

Step 3: By Krull lemma, m ) m2 ) ... ) mn. Let t ∈ m\m2. By Corollary 2,
mn ⊂ (t), for some n > 0; choose the minimal n with this property, and let
x ∈ mn−1\(t).

Let y := x
t . Since x /∈ (t), we have y /∈ R.

Clearly, xm ⊂ mn ⊂ (t). This gives ym ⊂ R. Then Step 2 implies that m−1m =
R, and Corollary 3 implies that R is DVR.
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Residue fields of discrete valuation rings (reminder)

Claim 2: Let R be a discrete valuation ring, and m its maximal ideal, and

k := R/m its residue field. Then md/md+1 is 1-dimensional as a k-vector

space for all d ∈ Z>0.

Proof: Let p be the generator of m, and Lpd(x) := pdx. Then Lpd : R 7→ md

is an isomorphism which maps m to md+1.

REMARK: For some discrete valuation rings, the map R−→R/m = k has

a section k −→R. This is true, for example, for the ring C[t] localized in (t);

in this case, k = C (prove this). For other rings, such section does not exist;

for example, consider the ring Z localized in (p); in this case, the residue field

in Z/pZ (prove this).
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Many ways to characterise a discrete valuation ring

THEOREM: Let R be a Noetherian local ring without zero divisors, m its
maximal ideal, and k := R/m its residue field. Assume that R has Krull
dimension 1. Then the following are equivalent.
(i) R is a discrete valuation ring. (ii) R is integrally closed.
(iii) m is a principal ideal. (iv) dimk

m
m2 = 1.

(v) Every non-zero ideal of R is a power of m.
(vi) There exists p ∈ R such that every non-zero ideal of R is generated by
pk, for some k ∈ Z>0.

Proof. Step 1: (i) implies (ii), (iii), (v) and (vi) as follows from Proposition
1. (i) implies (iv) by Claim 2. Therefore, (i) implies (ii)-(vi).

Step 2: (iii) ⇔ (i) by Claim 1. (ii) implies (i) by Proposition 2. Also, (v)
implies (vi) which implies that R is factorial which implies (ii). We proved
that all (i)-(vi) are equivalent, except maybe (iv).

Step 3: Now we prove that (iv) implies (iii). Let p be a generator of m

modulo m2. Then the natural map (p)
(p)m −→

m
m2 is surjective. By Nakayama

lemma, for any morphism ϕ : M −→N of finitely generated modules over a
local ring, surjectivity of the map ϕ : M

mM −→
N
mN implies the surjectivity

of ϕ, hence m is a principal ideal.
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