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Topological manifolds

REMARK: Manifolds can be smooth (of a given “differentiability class"),
real analytic, or topological (continuous).

DEFINITION: Topological manifold is a topological space which is locally
homeomorphic to an open ball in R™.

EXERCISE: Show that a group of homeomorphisms acts on a con-
nected manifold transitively.

DEFINITION: Such a topological space is called homogeneous.

Open problem: (Busemann)
Characterize manifolds among other homogeneous topological spaces.
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Banach fixed point theorem

LEMMA: (Banach fixed point theorem/ “contraction principle”)

Let U C R™ be a closed subset, and f : U —U a map which satisfies
1f(x) — f(y)] < k| , wWhere k£ < 1 is a real number (such a map is called
“contraction”). Then f has a fixed point, which is unique.

Proof. Step 1: Uniqueness is clear because for two fixed points =1 and z»
|f(z1) — f(x2)| = |21 — 22| < k|21 — 22

Step 2: Existence follows because the sequence zg = z,21 = f(z),xo =
f(f(x)),... satisfies |xr; — x;41| < k|r;—1 — z;| which gives |zn — z,41] < kE"a
where a = |z — f(z)|. Then |zn — zyp.,| < X0 k" Tia < k"1a, hence {z;} is
a Cauchy sequence, and converges to a limit y, which is unique.

Step 3: f(y) is a limit of a sequence f(xzg), f(x1),...f(x;),... which gives
y=f(y). =

EXERCISE: Find a counterexample to this statement when U is open

and not closed.
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Differentiable maps

DEFINITION: Let U,V C R"™ be open subsets. An affine map is a sum of
linear map a and a constant map. Its linear part is o.

DEFINITION: Let U C R™, V C R"™ be open subsets. Amap f: U—V is
called differentiable if it can be approximated by an affine one at any point:
that is, for any x € U, there exists an affine map ¢, : R™ — R"™ such that

im (@) — (@) _
11— |LE _331|

DEFINITION: Differential, or derivative of a differentiable map f :
U — V is the linear part of .

0

DEFINITION: Diffeomorphism is a differentiable map f which is invertible,
and such that f—1 is also differentiable. A map f : U—1V is a local
diffeomorphism if each point x € U has an open neighbourhood U7 > x such
that f: Uy — f(Uy) is a diffeomorphism.

REMARK: Chain rule says that a composition of two differentiable functions
is differentiable, and its differential is composition of their differentials.

REMARK: Chain rule implies that differential of a diffeomorphism is
invertible. Converse is also true (in a sense):
4
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Inverse function theorem

THEOREM: Let U,V C R™ be open subsets, and f: U — V a differentiable
map. Suppose that the differential of f is everywhere invertible. Then f is
locally a diffeomorphism.

Proof. Step 1: Let z € U. Without restricting generality, we may assume
that + = 0, U = B,(0) is an open ball of radius r», and in U one has
|f(x|1x)__é(x1)‘ < 1/2. Replacing f with —f o (Dgf)~1, where Dgf is differential
of f in (g we may assume also that Dgyf = —Id.

Step 2: In these assumptions, |f(z) + x| < 1/2|x|, hence ¢¥s(x) := f(x)+x—s
is a contraction. This map maps FT/Q(O) to itself when s < r/4. By Banach
fixed point theorem, vs(zx) = = has a unique fixed point zs, which is
obtained as a solution of the equation f(z) +x — s = z, or, equivalently,

f(x) = s. Denote the map s — x5 by g.

Step 3: By construction, fg = Id. Applying the chain rule again, we find
that g is also differentiable. m

REMARK: Usually, diffeomorphisms are assumed smooth (infinitely differ-
entiable). A smooth version of this result is left as an exercise.
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Critical points and critical values

DEFINITION: Let U C R™ V C R"™ be open subsets, and f: U—V a
smooth function. A point x € U is a critical point of f if the differential
D,f . R™—R"™ is not surjective. Critical value is an image of a critical
point. Regular value is a point of V which is not a critical value.

THEOREM: (Sard’s lemma)
The set of critical values of f is of measure O in V.

REMARK: We leave this theorem without a proof. We won't use it.

DEFINITION: A subset M C R" is an m-dimensional smooth submanifold
if for each x € M there exists an open in R"™ neighbourhood U > x and a
diffeomorphism from U to an open ball B C R"™ which maps U N M to an
intersection BN R™ of B and an m-dimensional linear subspace.

REMARK: Clearly, a smooth submanifold is a (topological) manifold.

THEOREM: Let U C R™,V C R"™ be open subsets, f: U—V a smooth
function, and y € V a regular value of f. Then f~1(y) is a smooth sub-

manifold of U.
6
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Preimage of a regular value

THEOREM: Let U C R™,V C R"™ be open subsets, f: U—V a smooth
function, and y € V a regular value of f. Then f1(y) is a smooth sub-
manifold of U.

Proof: Let z € U be a point in f~1(y). It suffices to prove that z has a
neighbourhood diffeomorphic to an open ball B, such that f~1(y) corresponds
to a linear subspace in B. Without restricting generality, we may assume that
y =0 and = = 0.

The differential Dgf : R"™ — R™ s surjective. Let L := kerDgf, and let
A: R"— L be any map which acts on L as identity. Then Dgof & A
R™ — R™ ¢ L is an isomorphism of vector spaces. Therefore, WV . fd A
mapping x; to f(xz1) ® A(zq1) is a diffeomorphism in a neighbourhood of
. However, f~1(0) = w—1(0@ L). We have constructed a diffeomorphism
of a neighbourhood of x with an open ball mapping f_lo) to0OH L. m
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Regular maps and solutions of a set of equations

COROLLARY: Let fq,...,fm be smooth functions on U C R"™ such that
the differentials df; are linearly independent everywhere. Then the set of
solutions of equations f1(z) = fo(z) = ... = fin(2z) = 0 is a smooth (n—m)-
dimensional submanifold in U.

DEFINITION: Smooth hypersurface is a closed codimension 1 submani-
fold.

EXERCISE: Prove that a smooth hypersurface in U is always obtained
as a solution of an equation f(z) = 0, where 0 is a regular value of a
function f: U — R.
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Abstract manifolds: charts and atlases

DEFINITION: An open cover of a topological space X is a family of open
sets {U;} such that |, U; = X. A cover {V;} is a refinement of a cover {U;}
if every V; is contained in some U;.

REMARK: Any two covers {U;}, {V;} of a topological space admit a
common refinement {U; NV;}.

DEFINITION: Let M be a topological manifold. A cover {U;} of M is an
atlas if for every U;, we have a map ¢; : U; — R"™ giving a homeomorphism of
U; with an open subset in R™. In this case, one defines the transition maps

Dij 1 (Ui NU;) — ¢;(U; N U;)

DEFINITION: A function R — R is of differentiability class C? if it is i
times differentiable, and its ¢-th derivative is continuous. A map R" — R™ s
of differentiability class C" if all its coordinate components are. A smooth
function/map is a function/map of class C® = N C".

DEFINITION: An atlas is smooth if all transition maps are smooth (of class
C™, i.e., infinitely differentiable), smooth of class C" if all transition functions
are of differentiability class C?, and real analytic if all transition maps admit
a Taylor expansion at each point.

)
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Covering maps

DEFINITION: Let ¢ : M —s M be a continuous map of manifolds (or CW
complexes). We say that ¢ is a covering if ¢ is locally a homeomorphism,
and for any x € M there exists a neighbourhood U > x such that is a dis-
connected union of several manifolds U; such that the restriction gp)Ui IS a
homeomorphism.

DEFINITION: Let ' be a discrete group continuously acting on a locally
compact topological space M. This action is called properly discontinuous

if the space of orbits of I' is Hausdorff.

THEOREM: Let ' be a discrete group acting on M freely and properly
discontinuously. Then M — M/I" is a covering.

This result is left as an exercise.
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Finite coverings
EXAMPLE: A map z — nz in a circle S! is a covering.

EXAMPLE: For any non-degenerate integer matrix A € End(Z"), the corre-
sponding map of a torus T™ is a covering.

CLAIM: Let ¢ : M — M be a covering, with M connected. Then the
number of preimages |0 1(m)| is constant in M.

Proof: Since ¢~ 1(U) is a disconnected union of several copies of U, this
number is a locally constant function of m. m

DEFINITION: Let ¢ : M — M be a covering, with M connected. The
number |o~1(m)| is called degree of a map .

CLAIM: Any covering ¢ : M — M with M compact has finite degree.

Proof: Take U in such a way that ¢~ 1(U) is a disconnected union of several
copies of U, and let x € U. Then go_l(a:) is discrete, and since M is compact,

any discrete subset of M is finite. m
11
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Finite projection maps (reminder)

PROPOSITION: Let X C C™ be an irreducible affine subvariety, z; coordi-
nates on C", and zq, ..., 2z transcendence basis on k(X ). Then, for all A1, ..., A\
outside of the zero-set of a certain non-zero homogeneous polynomial, the
function z, € Ox is a root of a monic polynomial in the variables 21, ..., 2},
where zé = z; + \;jZn-

Proof: Lecture 15. =

Corollary 1: (Noether’s normalization lemma, first version)

Let X C C" be an irreducible affine subvariety, z; coordinates on C", and
z1, ..., 21 transcendence basis on k(X ). Then there exists a linear coordinate
change z! := z; + 227’;’{ Ai+kZj+k» SUCh that the projection [ @ X — Ck

to the first £ arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection P, : X —cr1is
finite onto its image X7 (after some linear adjustment). Using induction by
n, we can assume that P, : X; — CF is also finite, hence the composition
map is finite (composition of finite morphisms is always finite, as we

have seen). =
12
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Multi-valued functions

DEFINITION: Define a complex manifold as a manifold equipped with an
atlas {U;}, with each open subset U; C M identified with an open ball in C",
and complex analytic transition functions.

DEFINITION: Define a complex variety as a subvariety Z C M in a complex
manifold given by a collection of complex analytic equation.

DEFINITION: Multi-valued function on M is a closed, irreducible complex
subvariety Z C M x C such that the projection Z — M is locally a diffeomor-
phism outside of a closed, nowhere dense subset in Z. The set Z is called
the graph of the multi-valued function.

EXAMPLE: Logarithm is a multi-valued function on C. Indeed, let Z
be the graph of exponent y = €% in C2. The projection to x expresses all
branches of logarithm x = logy as functions of y.

EXAMPLE: y — ,/y Is a multi-valued function. Indeed, the graph of
y = z2 projected to z gives both branches of VY-
13
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Multi-valued functions and branched covers

THEOREM: Consider a subvariety Z ¢ C**t1 given by a monic polynomial
equation P(t) = 0, with P(t) € O¢n[t]. Assume that P(t) is irreducible. Then
Z 1s a graph of a multi-valued function. Moreover, the projection of Z
to C" (to the first n coordinates) is a diffeomorphism at (z,t) if and only if

P'(z) # 0.

Proof. Step 1: We shall represent points of C**t1 by pairs (z,t), with
z=(z1,....,2n). Let m: Z — C"™ be the standard projection along ¢t. By the
inverse function theorem, Z C cnt1l ijs a smooth submanifold in a neigh-
bourhood of any point (z,¢t) € Z, with z ¢ C" whenever the differential
dP : C"t1l _ C is surjective (non-zero) at (z,t).

Step 2: This implies that Z is smooth outside of an algebraic subset of all
(z,t) € C**1 such that dP(z,t)(&,7) = 0O, for all € € (d/dzq,...,d/dz,), and
T € (d/dt). Let P(z,t) =tk + Zf;cl) t'a;(z). Then

k—1 k—1
dP(z,t) = ktt7ldt + 3 tida;(z) + Y it"ta;(2)dt.
i=0 i=0
For |t| > 0, the leading term nt*~1dt + t*1da;_1(z) dominates the rest,
and it is non-zero, because its dt component is non-zero.
14
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Multi-valued functions and branched covers (2)

THEOREM: Consider a subvariety Z C cn+l given by a monic polynomial
equation P(t) = 0, with P(t) € O¢n[t]. Assume that P(t) is irreducible. Then
Z 1s a graph of a multi-valued function. Moreover, Z is smooth, and the
projection of Z to C"™ (to the first n coordinates) is a diffeomorphism at (z,t)
if and only if P/'(2) # 0.

Step 3: Let z € Z be a smooth point, and (¢,7) € T.Z. Then n: W — C"
is invertible whenever W does not contain a vector (0,7), equivalently, when
dP(z,t)(0,7) # 0. This is equivalent to C@1) -+ o,

Step 4: Let Pl/(z,t) = %. To prove that Z defines a multi-valued
function, it remains to show that P/(z,t) is not identically zero on Z. Since
P(z,t) isirreducible, and @Cnﬂ is factorial, the ring @%’;1 has no zero divisors.
Then Hilbert Nullstellensatz would imply that any function f € @ccn+1 which
vanishes on Z is divisible by P(z,t). Then P/(z,t) does not vanish on Z,

because it is polynomial of smaller degree. m

15
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Symmetric polynomials

DEFINITION: Symmetric polynomial P(zq,...,zn) € Cl[z1,...,2n] is @ poly-
nomial which is invariant with respect to the symmetric group 2, acting on
Clz1, ..., zn] in a usual way.

DEFINITION: Consider the polynomial P(z1,...,2zn,t) = [[l'—1(t + 2;) =
S e;tt, with e; € C[z1, ..., zn]. Then e; are called elementary symmetric poly-

nomials on zq, ..., zn.

THEOREM: Every symmetric polynomial on z1,...,z, can be polynomi-
ally expressed through the elementary symmetric polynomials.

Proof:. Left as an exercise. =
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Discriminant of a polynomial

DEFINITION: Consider the symmetric polynomial [[;«;(2; — 2;). Discrimi-
nant of the polynomial P(z1,...,2n,t) 1= [} 1 (t—2;) is [[;« (2 —z;) considered
as a polynomial of its coefficients.

EXAMPLE: Discriminant of the quadratic polynomial t24bt+c is b2 —4c.

EXAMPLE: Discriminant of the cubic polynomial t3 + bt2 + ct + d is
b2c2 — 4¢3 — 4b3d — 27d? + 18bcd.

CLAIM: A polynomial has no multiple roots if and only if its discrimi-
nant Is non-zero. =

Corollary 1: Let P(t) € k[t] be a polynomial over an algebraically closed field,
and D its discriminant. Then the derivative P/(t) does not vanish on ali
roots of ¢t if and only if D = 0.

Proof: Let a be a root of P. Then P(t) = Py(t)(t—«a), and P'(t) = PL(t)(t—
a) + Po(t). Therefore, P'(a) = 0 if and only if P,(t) = 0. This is equivalent
to P(t) being divisible by (t — a)2. =
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Discriminant and ramified coverings

THEOREM: Consider a subvariety Z ¢ C*t1 given by an irreducible monic
polynomial equation P(t) = 0 of degree k, with P(t) € Clzq,...,zn][t], and
let 7 . Z — C" be the projection to the coordinates zq,...,zn. Assume that
P(t) is irreducible. Denote by D(z) the discriminant of P(t), considered as
a polynomial function on (z1,...,2n), and let U C C"™ be the set of all z € C"®
such that D(z) # 0. Then the intersection Zn=—1(U) is smooth and the
projection = : ZnNn#~1(U) — U is a d-sheeted covering.

Proof. Step 1: Since P(t) is irreducible, it has no common divisors with P/(¢).
Since the polynomial ring is factorial, irreducibility implies that the ideal (P(t))
is prime, hence P/(t) does not identically vanish on Z. Therefore U is open
and nowhere dense. By Corollary 1, for any z € U, the polynomials P(z,t)
and P/(z,t) have no common roots. Therefore, dP(z,t) # 0 on ZN=x1(U),
and the set Z = {(z,t) | P(z,t) = 0} is smooth outside of zeros of D(z).

Step 2: Let z € ZNna Y(U) and (¢, 7) € T,pZ. Then m: T, nZ—C"is
invertible whenever T(Zﬂj) does not contain a vector (0,7), equivalently, when

dP(z,t)(0,7) # 0. This is equivalent to 2@ -« o,

Step 3: The map n: ZNn=x Y(U) — U is locally a diffeomorphism, and each
point has precisely d preimages. Then it is a covering (prove it). =
18
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Every algebraic variety is a ramified cover

Comparing this with the Noether normalization lemma, we obtain the follow-
ing theorem.

COROLLARY: Let X be an algebraic variety. Then there exists a birational,
finite map X — Z, a divizor D C Z, and a divisor D1 C C", such that Z\D
IS a d-sheeted covering of C""\D{. =

COROLLARY: Every algebraic variety X over C has a smooth point.
Moreover, non-smooth points of X are contained in a proper algebraic

subvariety of X.

Proof: Indeed, every birational map is an isomorphism outside of a
divisor. m
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