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Topological manifolds

REMARK: Manifolds can be smooth (of a given “differentiability class”),

real analytic, or topological (continuous).

DEFINITION: Topological manifold is a topological space which is locally

homeomorphic to an open ball in Rn.

EXERCISE: Show that a group of homeomorphisms acts on a con-

nected manifold transitively.

DEFINITION: Such a topological space is called homogeneous.

Open problem: (Busemann)

Characterize manifolds among other homogeneous topological spaces.
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Banach fixed point theorem

LEMMA: (Banach fixed point theorem/“contraction principle”)

Let U ⊂ Rn be a closed subset, and f : U −→ U a map which satisfies

|f(x) − f(y)| < k|x − y|, where k < 1 is a real number (such a map is called

“contraction”). Then f has a fixed point, which is unique.

Proof. Step 1: Uniqueness is clear because for two fixed points x1 and x2

|f(x1)− f(x2)| = |x1 − x2| < k|x1 − x2|.

Step 2: Existence follows because the sequence x0 = x, x1 = f(x), x2 =

f(f(x)), ... satisfies |xi − xi+1| 6 k|xi−1 − xi| which gives |xn − xn+1| < kna,

where a = |x− f(x)|. Then |xn − xn+m| <
∑m
i=0 k

n+ia 6 kn 1
1−ka, hence {xi} is

a Cauchy sequence, and converges to a limit y, which is unique.

Step 3: f(y) is a limit of a sequence f(x0), f(x1), ...f(xi), ... which gives

y = f(y).

EXERCISE: Find a counterexample to this statement when U is open

and not closed.
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Differentiable maps

DEFINITION: Let U, V ⊂ Rn be open subsets. An affine map is a sum of
linear map α and a constant map. Its linear part is α.

DEFINITION: Let U ⊂ Rm, V ⊂ Rn be open subsets. A map f : U −→ V is
called differentiable if it can be approximated by an affine one at any point:
that is, for any x ∈ U , there exists an affine map ϕx : Rm −→ Rn such that

lim
x1→x

|f(x1)− ϕ(x1)|
|x− x1|

= 0

DEFINITION: Differential, or derivative of a differentiable map f :
U −→ V is the linear part of ϕ.

DEFINITION: Diffeomorphism is a differentiable map f which is invertible,
and such that f−1 is also differentiable. A map f : U −→ V is a local
diffeomorphism if each point x ∈ U has an open neighbourhood U1 3 x such
that f : U1 −→ f(U1) is a diffeomorphism.

REMARK: Chain rule says that a composition of two differentiable functions
is differentiable, and its differential is composition of their differentials.

REMARK: Chain rule implies that differential of a diffeomorphism is
invertible. Converse is also true (in a sense):
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Inverse function theorem

THEOREM: Let U, V ⊂ Rn be open subsets, and f : U −→ V a differentiable
map. Suppose that the differential of f is everywhere invertible. Then f is
locally a diffeomorphism.

Proof. Step 1: Let x ∈ U . Without restricting generality, we may assume
that x = 0, U = Br(0) is an open ball of radius r, and in U one has
|f(x1)−ϕ(x1)|
|x−x1|

< 1/2. Replacing f with −f ◦ (D0f)−1, where D0f is differential
of f in 0, we may assume also that D0f = − Id.

Step 2: In these assumptions, |f(x) +x| < 1/2|x|, hence ψs(x) := f(x) +x− s
is a contraction. This map maps Br/2(0) to itself when s < r/4. By Banach
fixed point theorem, ψs(x) = x has a unique fixed point xs, which is
obtained as a solution of the equation f(x) + x− s = x, or, equivalently,
f(x) = s. Denote the map s−→ xs by g.

Step 3: By construction, fg = Id. Applying the chain rule again, we find
that g is also differentiable.

REMARK: Usually, diffeomorphisms are assumed smooth (infinitely differ-
entiable). A smooth version of this result is left as an exercise.
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Critical points and critical values

DEFINITION: Let U ⊂ Rm, V ⊂ Rn be open subsets, and f : U −→ V a
smooth function. A point x ∈ U is a critical point of f if the differential
Dxf : Rm −→ Rn is not surjective. Critical value is an image of a critical
point. Regular value is a point of V which is not a critical value.

THEOREM: (Sard’s lemma)
The set of critical values of f is of measure 0 in V .

REMARK: We leave this theorem without a proof. We won’t use it.

DEFINITION: A subset M ⊂ Rn is an m-dimensional smooth submanifold
if for each x ∈ M there exists an open in Rn neighbourhood U 3 x and a
diffeomorphism from U to an open ball B ⊂ Rn which maps U ∩ M to an
intersection B ∩Rm of B and an m-dimensional linear subspace.

REMARK: Clearly, a smooth submanifold is a (topological) manifold.

THEOREM: Let U ⊂ Rm, V ⊂ Rn be open subsets, f : U −→ V a smooth
function, and y ∈ V a regular value of f . Then f−1(y) is a smooth sub-
manifold of U.
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Preimage of a regular value

THEOREM: Let U ⊂ Rm, V ⊂ Rn be open subsets, f : U −→ V a smooth

function, and y ∈ V a regular value of f . Then f−1(y) is a smooth sub-

manifold of U.

Proof: Let x ∈ U be a point in f−1(y). It suffices to prove that x has a

neighbourhood diffeomorphic to an open ball B, such that f−1(y) corresponds

to a linear subspace in B. Without restricting generality, we may assume that

y = 0 and x = 0.

The differential D0f : Rn −→ Rm is surjective. Let L := kerD0f , and let

A : Rn −→ L be any map which acts on L as identity. Then D0f ⊕ A :

Rn −→ Rm ⊕ L is an isomorphism of vector spaces. Therefore, Ψ : f ⊕ A
mapping x1 to f(x1)⊕A(x1) is a diffeomorphism in a neighbourhood of

x. However, f−1(0) = Ψ−1(0 ⊕ L). We have constructed a diffeomorphism

of a neighbourhood of x with an open ball mapping f−10) to 0⊕ L.
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Regular maps and solutions of a set of equations

COROLLARY: Let f1, ..., fm be smooth functions on U ⊂ Rn such that

the differentials dfi are linearly independent everywhere. Then the set of

solutions of equations f1(z) = f2(z) = ... = fm(z) = 0 is a smooth (n−m)-

dimensional submanifold in U.

DEFINITION: Smooth hypersurface is a closed codimension 1 submani-

fold.

EXERCISE: Prove that a smooth hypersurface in U is always obtained

as a solution of an equation f(z) = 0, where 0 is a regular value of a

function f : U −→ R.
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Abstract manifolds: charts and atlases

DEFINITION: An open cover of a topological space X is a family of open
sets {Ui} such that

⋃
iUi = X. A cover {Vi} is a refinement of a cover {Ui}

if every Vi is contained in some Ui.

REMARK: Any two covers {Ui}, {Vi} of a topological space admit a
common refinement {Ui ∩ Vj}.

DEFINITION: Let M be a topological manifold. A cover {Ui} of M is an
atlas if for every Ui, we have a map ϕi : Ui → Rn giving a homeomorphism of
Ui with an open subset in Rn. In this case, one defines the transition maps

Φij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

DEFINITION: A function R−→ R is of differentiability class Ci if it is i
times differentiable, and its i-th derivative is continuous. A map Rn −→ Rm is
of differentiability class Ci if all its coordinate components are. A smooth
function/map is a function/map of class C∞ =

⋂
Ci.

DEFINITION: An atlas is smooth if all transition maps are smooth (of class
C∞, i.e., infinitely differentiable), smooth of class Ci if all transition functions
are of differentiability class Ci, and real analytic if all transition maps admit
a Taylor expansion at each point.
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Covering maps

DEFINITION: Let ϕ : M̃ −→M be a continuous map of manifolds (or CW

complexes). We say that ϕ is a covering if ϕ is locally a homeomorphism,

and for any x ∈ M there exists a neighbourhood U 3 x such that is a dis-

connected union of several manifolds Ui such that the restriction ϕ
∣∣∣Ui is a

homeomorphism.

DEFINITION: Let Γ be a discrete group continuously acting on a locally

compact topological space M . This action is called properly discontinuous

if the space of orbits of Γ is Hausdorff.

THEOREM: Let Γ be a discrete group acting on M freely and properly

discontinuously. Then M −→M/Γ is a covering.

This result is left as an exercise.
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Finite coverings

EXAMPLE: A map x−→ nx in a circle S1 is a covering.

EXAMPLE: For any non-degenerate integer matrix A ∈ End(Zn), the corre-

sponding map of a torus Tn is a covering.

CLAIM: Let ϕ : M̃ −→M be a covering, with M connected. Then the

number of preimages |ϕ−1(m)| is constant in M.

Proof: Since ϕ−1(U) is a disconnected union of several copies of U , this

number is a locally constant function of m.

DEFINITION: Let ϕ : M̃ −→M be a covering, with M connected. The

number |ϕ−1(m)| is called degree of a map ϕ.

CLAIM: Any covering ϕ : M̃ −→M with M̃ compact has finite degree.

Proof: Take U in such a way that ϕ−1(U) is a disconnected union of several

copies of U , and let x ∈ U . Then ϕ−1(x) is discrete, and since M̃ is compact,

any discrete subset of M̃ is finite.
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Finite projection maps (reminder)

PROPOSITION: Let X ⊂ Cn be an irreducible affine subvariety, zi coordi-

nates on Cn, and z1, ..., zk transcendence basis on k(X). Then, for all λ1, ..., λk
outside of the zero-set of a certain non-zero homogeneous polynomial, the

function zn ∈ OX is a root of a monic polynomial in the variables z′1, ..., z
′
k,

where z′i := zi + λizn.

Proof: Lecture 15.

Corollary 1: (Noether’s normalization lemma, first version)

Let X ⊂ Cn be an irreducible affine subvariety, zi coordinates on Cn, and

z1, ..., zk transcendence basis on k(X). Then there exists a linear coordinate

change z′i := zi +
∑n−k
j=1 λj+kzj+k, such that the projection Πk : X −→ Ck

to the first k arguments is a finite, dominant morphism.

Proof: Previous proposition shows that the projection Pn : X −→ Cn−1 is

finite onto its image X1 (after some linear adjustment). Using induction by

n, we can assume that Pk : X1 −→ Ck is also finite, hence the composition

map is finite (composition of finite morphisms is always finite, as we

have seen).
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Multi-valued functions

DEFINITION: Define a complex manifold as a manifold equipped with an

atlas {Ui}, with each open subset Ui ⊂ M identified with an open ball in Cn,

and complex analytic transition functions.

DEFINITION: Define a complex variety as a subvariety Z ⊂M in a complex

manifold given by a collection of complex analytic equation.

DEFINITION: Multi-valued function on M is a closed, irreducible complex

subvariety Z ⊂M ×C such that the projection Z −→M is locally a diffeomor-

phism outside of a closed, nowhere dense subset in Z. The set Z is called

the graph of the multi-valued function.

EXAMPLE: Logarithm is a multi-valued function on C. Indeed, let Z

be the graph of exponent y = ex in C2. The projection to x expresses all

branches of logarithm x = log y as functions of y.

EXAMPLE: y −→√y is a multi-valued function. Indeed, the graph of

y = x2 projected to x gives both branches of
√
y.
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Multi-valued functions and branched covers

THEOREM: Consider a subvariety Z ⊂ Cn+1 given by a monic polynomial
equation P (t) = 0, with P (t) ∈ OCn[t]. Assume that P (t) is irreducible. Then
Z is a graph of a multi-valued function. Moreover, the projection of Z
to Cn (to the first n coordinates) is a diffeomorphism at (z, t) if and only if
P ′(z) 6= 0.

Proof. Step 1: We shall represent points of Cn+1 by pairs (z, t), with
z = (z1, ..., zn). Let π : Z −→ Cn be the standard projection along t. By the
inverse function theorem, Z ⊂ Cn+1 is a smooth submanifold in a neigh-
bourhood of any point (z, t) ∈ Z, with z ∈ Cn whenever the differential
dP : Cn+1 −→ C is surjective (non-zero) at (z, t).

Step 2: This implies that Z is smooth outside of an algebraic subset of all
(z, t) ∈ Cn+1 such that dP (z, t)(ξ, τ) = 0, for all ξ ∈ 〈d/dz1, ..., d/dzn〉, and
τ ∈ 〈d/dt〉. Let P (z, t) = tk +

∑k−1
i=0 t

iai(z). Then

dP (z, t) = ktk−1dt+
k−1∑
i=0

tidai(z) +
k−1∑
i=0

iti−1ai(z)dt.

For |t| � 0, the leading term ntk−1dt+ tk−1dak−1(z) dominates the rest,
and it is non-zero, because its dt component is non-zero.
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Multi-valued functions and branched covers (2)

THEOREM: Consider a subvariety Z ⊂ Cn+1 given by a monic polynomial

equation P (t) = 0, with P (t) ∈ OCn[t]. Assume that P (t) is irreducible. Then

Z is a graph of a multi-valued function. Moreover, Z is smooth, and the

projection of Z to Cn (to the first n coordinates) is a diffeomorphism at (z, t)

if and only if P ′(z) 6= 0.

Step 3: Let z ∈ Z be a smooth point, and (ξ, τ) ∈ TzZ. Then π : W −→ Cn

is invertible whenever W does not contain a vector (0, τ), equivalently, when

dP (z, t)(0, τ) 6= 0. This is equivalent to dP (z,t)
dt 6= 0.

Step 4: Let P ′(z, t) := dP (z,t)
dt . To prove that Z defines a multi-valued

function, it remains to show that P ′(z, t) is not identically zero on Z. Since

P (z, t) is irreducible, and OCn+1 is factorial, the ring
OCn+1

(P ) has no zero divisors.

Then Hilbert Nullstellensatz would imply that any function f ∈ OCn+1 which

vanishes on Z is divisible by P (z, t). Then P ′(z, t) does not vanish on Z,

because it is polynomial of smaller degree.
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Symmetric polynomials

DEFINITION: Symmetric polynomial P (z1, ..., zn) ∈ C[z1, ..., zn] is a poly-

nomial which is invariant with respect to the symmetric group Σn acting on

C[z1, ..., zn] in a usual way.

DEFINITION: Consider the polynomial P (z1, ..., zn, t) :=
∏n
i=1(t + zi) =∑

eit
i, with ei ∈ C[z1, ..., zn]. Then ei are called elementary symmetric poly-

nomials on z1, ..., zn.

THEOREM: Every symmetric polynomial on z1, ..., zn can be polynomi-

ally expressed through the elementary symmetric polynomials.

Proof: Left as an exercise.
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Discriminant of a polynomial

DEFINITION: Consider the symmetric polynomial
∏
i 6=j(zi − zj). Discrimi-

nant of the polynomial P (z1, ..., zn, t) :=
∏n
i=1(t−zi) is

∏
i 6=j(zi−zj) considered

as a polynomial of its coefficients.

EXAMPLE: Discriminant of the quadratic polynomial t2+bt+c is b2−4c.

EXAMPLE: Discriminant of the cubic polynomial t3 + bt2 + ct + d is

b2c2 − 4c3 − 4b3d− 27d2 + 18bcd.

CLAIM: A polynomial has no multiple roots if and only if its discrimi-

nant is non-zero.

Corollary 1: Let P (t) ∈ k[t] be a polynomial over an algebraically closed field,

and D its discriminant. Then the derivative P ′(t) does not vanish on all

roots of t if and only if D 6= 0.

Proof: Let α be a root of P . Then P (t) = Pα(t)(t−α), and P ′(t) = P ′α(t)(t−
α) + Pα(t). Therefore, P ′(α) = 0 if and only if Pα(t) = 0. This is equivalent

to P (t) being divisible by (t− α)2.
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Discriminant and ramified coverings

THEOREM: Consider a subvariety Z ⊂ Cn+1 given by an irreducible monic
polynomial equation P (t) = 0 of degree k, with P (t) ∈ C[z1, ..., zn][t], and
let π : Z −→ Cn be the projection to the coordinates z1, ..., zn. Assume that
P (t) is irreducible. Denote by D(z) the discriminant of P (t), considered as
a polynomial function on (z1, ..., zn), and let U ⊂ Cn be the set of all z ∈ Cn
such that D(z) 6= 0. Then the intersection Z ∩π−1(U) is smooth and the
projection π : Z ∩ π−1(U)−→ U is a d-sheeted covering.

Proof. Step 1: Since P (t) is irreducible, it has no common divisors with P ′(t).
Since the polynomial ring is factorial, irreducibility implies that the ideal (P (t))
is prime, hence P ′(t) does not identically vanish on Z. Therefore U is open
and nowhere dense. By Corollary 1, for any z ∈ U , the polynomials P (z, t)
and P ′(z, t) have no common roots. Therefore, dP (z, t) 6= 0 on Z ∩ π−1(U),
and the set Z = {(z, t) | P (z, t) = 0} is smooth outside of zeros of D(z).

Step 2: Let z ∈ Z ∩ π−1(U) and (ξ, τ) ∈ T(z,t)Z. Then π : T(z,t)Z −→ Cn is
invertible whenever T(z,t) does not contain a vector (0, τ), equivalently, when

dP (z, t)(0, τ) 6= 0. This is equivalent to dP (z,t)
dt 6= 0.

Step 3: The map π : Z ∩π−1(U)−→ U is locally a diffeomorphism, and each
point has precisely d preimages. Then it is a covering (prove it).
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Every algebraic variety is a ramified cover

Comparing this with the Noether normalization lemma, we obtain the follow-

ing theorem.

COROLLARY: Let X be an algebraic variety. Then there exists a birational,

finite map X −→ Z, a divizor D ⊂ Z, and a divisor D1 ⊂ Cn, such that Z\D
is a d-sheeted covering of Cn\D1.

COROLLARY: Every algebraic variety X over C has a smooth point.

Moreover, non-smooth points of X are contained in a proper algebraic

subvariety of X.

Proof: Indeed, every birational map is an isomorphism outside of a

divisor.
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