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Associated graded ring

DEFINITION: A multiplicative filtration on a ring A is a sequence A =
F0 ⊃ F1 ⊃ ... such that all Fi are closed under multiplication and satisfy FiFj ⊂
Fi+j. A ring equipped with a multiplicative filtration is called filtered. An
associated graded quotient of a filtered ring is ⊕∞i=0A

i, where Ai = Fi/Fi+1.

CLAIM: A = F0 ⊃ F1 ⊃ F2 ⊃ ... be a filtered ring, a1, a2 ∈ Fi and b1, b2 ∈ Fj.
Assume that a1 = a2 mod Fi+1 and b1 = b2 mod Fj+1. Then a1b1 = a2b2
mod Fi+1Fj + FiFj+1.

Proof: a1b1 − a1b2 = a1(b1 − b2) = 0 mod FiFj+1 and
a1b2 − a2b2 = (a1 − a2)b2 = 0 mod Fi+1Fj.

REMARK: Since Fi+1Fj + FiFj+1 ⊂ Fi+j+1, the product of a ∈ Fi/Fi+1
and b ∈ Fj/Fj+1 is well defined as an element of Fi+j/Fi+j+1. Therefore, the
associated graded ring ⊕∞i=0A

i is equipped with a natural ring structure.
This ring is called the associated graded ring.

EXAMPLE: Let I ⊂ A be an ideal. Then A ⊃ I ⊃ I2 ⊃ ... is a multiplicative
filtration. The corresponding associated graded ring A∗ :=

⊕∞
i=0

Ii

Ii+1 is called
the associated graded ring of the ideal I.
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Finitely generated modules over a graded ring

CLAIM: The associated graded ring of a Noetherian local ring is finitely
generated.

DEFINITION: Let A∗ =
⊕∞

i=0 Ai be a graded ring. Graded module over a
graded ring is a module M∗ =

⊕∞
i=0 M i such that AiMj ⊂M i+j.

CLAIM: Let M∗ be a finitely generated graded module over a graded ring
A∗, with all Ai finite-dimensional over a field A0 = k. Then dimkM

i <∞.

EXERCISE: Let f : Z>0 −→ Z be a function. Assume that g(n) := f(n +
1)−f(n) is polynomial for n� 0. Prove that f(n) is polynomial for n� 0.

DEFINITION: Let M∗ be a finitely generated graded module over a graded
ring A∗, with A0 = k a field. The Hilbert function of M∗ is hM(n) :=
dimkM

n.

THEOREM: Let M∗ be a finitely generated graded module over a finite-
generated graded ring A∗, with A0 = k a field. Then the Hilbert function
of hM(n) is polynomial for n sufficiently big.

Proof: Next slide
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Hilbert polynomial of a graded module

THEOREM 1: Let M∗ be a finitely generated graded module over a graded

ring A∗ generated by a finite-dimensional space A1, with A0 = k a field. Then

the Hilbert function of hM(n) is polynomial for n sufficiently big.

Proof. Step 1: Let A∗ be a finitely generated graded ring, and

0−→M∗1 −→M∗2 −→M∗3 −→ 0.

an exact sequence of finitely generated graded A∗-modules. Then hM2
(n) =

hM1
(n) + hM3

(n). Therefore, hMi
(n) is polynomial Mi if it is polynomial

for Mj,Mk.

Step 2: Recall that an A∗-module is called cyclic if it is generated by one

element. Suppose that for any cyclic A∗-module, the Hilbert function

hM(n) is polynomial for n � 0. Then it is polynomial for n � 0 for

any finitely generated graded A∗-module. Indeed, every finitely generated

A∗-module can be obtained as a successive extension of cyclic ones. Our

assumption means that hM(n) is polynomial for n� 0 when M∗ is generated

by one element. Applying Step 1 and induction by the number of generators,

we prove that hM(n) is polynomial for n� 0 for any number of generators.
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Hilbert polynomial of a graded module (2)

Step 3: Let A∗ be a finitely generated graded ring, M∗ be a torsion-free
A∗-module, and a ∈ A1. Denote the map m 7→ ma by La. Consider an
exact sequence 0−→ ker La −→M∗

La−→ M∗+1 −→ M∗+1

aM∗ −→ 0. Let U := M∗+1

aM∗ .
Suppose that the Hilbert function hU(n) and hker La is polynomial for
n� 0. Since hM(n + 1)− hM(n) = hU(n)− hker La, this implies that hM(n)
is polynomial for n� 0 (Exercise 1).
Step 4: For a cyclic, graded, finitely generated k[t]-module, hM(n) = const
for n� 0. We proved Theorem 1 for A∗ = k[t].

Step 5: Let A∗ be a graded ring, dimkA
1 = d. We prove that hM(n) is

polynomial using induction in d. For d = 1 it follows from Step 4 and Step
2. Assume that for any graded ring B∗ generated by B1 with dimkB

1 < d, and
any finitely-generated B∗-module U∗, the Hilbert function hU(n) is polynomial
for n� 0.

Step 6: Let a ∈ A1 a generator of A∗, and
0−→ ker La −→A∗

La−→ A∗+1 −→ A∗+1

aA∗ −→ 0 the exact sequence of Step 3.

The module ker La is not cyclic, but it is a module over an algebra A∗+1

aA∗ , hence

hker La(n) is polynomial whenever the Hilbert function of any A∗+1

aA∗ -module is

polynomial. By induction assumption, the Hilbert function of A∗+1

aA∗ -modules
is polynomial for n� 0. By Step 3, the same is true for M∗.
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Krull dimension and the degree of the Hilbert polynomial

Step 3 also brings the following corollary

COROLLARY: Let M be a graded A∗-module and a ∈ Ak an element such

that the multiplication map La : M −→M , La(x) = ax is injective. Denote

by N the module M/aM . Then deghN(n) = deghM(n)− 1.

THEOREM 2: Let R be a Noetherian local ring, m its maximal ideal, A :=⊕∞
i=0

mi

mi+1 its associated graded ring, and hA(n) := dimAn. Then the Hilbert

function hA(n) is a polynomial for n� 0. Moreover, its degree d is equal

to the Krull dimension of R.

Proof. Step 1: By Nakayama lemma, A1 is 1-dimensional and generates A∗.
Then hA(n) is polynomial by Theorem 1.

Step 2: Choose a minimal prime ideal q ⊂ R in such a way that dimR/q =

dimR. The degree of the relevant Hilbert polynomials is the same, because

R1 is finite as an R-module. Replacing R by R/q if necessary, we may

assume that R has no zero divisors.
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Krull dimension and the degree of the Hilbert polynomial (2)

Step 3: Let R̃ be an integral closure of R. By Cohen-Seidenberg, the Krull

dimension of R̃ is equal to the Krull dimension of R. Denote by Ã the

associated graded ring of R̃. Then deghA(n) = deghÃ(n), because Ã is a

finite extension of A. Replacing R by R̃ if necessary, we may assume that

R is normal.

Step 4: Let 0 ( p1 ( p2 ( ... ( pn ( R be a chain of prime ideals of maximal

possible length. Since Rp1 is a local integrally closed ring of Krull dimension

1, it is a discrete valuation ring, and its maximal ideal is principal. Therefore

in the ring Rp1 we have p1 = (p), where p ∈ p1.

Step 5: The localization of R/(p) in p1 is a field, hence p1 is a minimal prime

ideal in R/(p). Therefore the chain of prime ideals p1 ( p2 ( ... ( pn ( R/(p)

is maximal, and R/(p) has Krull dimension dimR− 1.

Let a ∈ A1 = m1

m2 be the class represented by p. Using induction in dimR, we

may assume that deghA/(a)(n) = dimR/(p) = dimR−1. By Theorem 1, Step

3, deghA/(a)(n) = deghA(n)− 1. This gives deghA(n) = deghA/(a)(n) + 1 =

dimR/(p) + 1 = dimR.
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