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Associated graded ring

DEFINITION: A multiplicative filtration on a ring A is a sequence A =
Fp D F1 D ... such that all F; are closed under multiplication and satisfy F;F; C
Fi—l—j- A ring equipped with a multiplicative filtration ?s called filtered. An
associated graded quotient of a filtered ring is ©;2 jA*, where A' = F;/F; 1 1.

CLAIM: A = Fp D F1 D F» D ... be a filtered ring, ay,ap € F; and b1,b € F).
Assume that a3 = ap mod F;q and by = bp mod F;4q. Then aib; = azby
mod Fz+1F] -4 FZFJ_|_1

Proof: a1by —a1bp = al(bl — 62) =0 mod FiFj—l—l and
a1bo — asby = (al — ag)bQ = 0 mod Fz’—I—le- H

REMARK: Since F;1F; + F;F;11 C F;4 41, the product of a € F;/F; 44
and b € F;/F; 41 is well defined as an element of F; ;/F; 1 ;41. Therefore, the
associated graded ring @g’;OAZ IS equipped with a natural ring structure.
This ring is called the associated graded ring.

EXAMPLE: Let I C A be an ideal. Then A D> I D> I? > .. is a multiplicative
filtration. The corresponding associated graded ring A* := EB;?;O% is called

the associated graded ring of the ideal I.
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Finitely generated modules over a graded ring

CLAIM: The associated graded ring of a Noetherian local ring is finitely
generated. =

DEFINITION: Let A* = @32, A’ be a graded ring. Graded module over a
graded ring is a module M* = @ , M* such that A*M7 C M7,

CLAIM: Let M™*™ be a finitely generated graded module over a graded ring
A*, with all A* finite-dimensional over a field A° = k. Then dim, M’ < co. m

EXERCISE: Let f: 7?9 — Z be a function. Assume that g(n) = f(n +
1) — f(n) is polynomial for n > 0. Prove that f(n) is polynomial for n > 0.

DEFINITION: Let M* be a finitely generated graded module over a graded
ring A*, with A9 = k a field. The Hilbert function of M* is hy(n) =
dimk M™.

THEOREM: Let M* be a finitely generated graded module over a finite-
generated graded ring A*, with A° = k a field. Then the Hilbert function
of h);(n) is polynomial for n sufficiently big.

Proof: Next slide
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Hilbert polynomial of a graded module

THEOREM 1: Let M™* be a finitely generated graded module over a graded
ring A* generated by a finite-dimensional space Al, with A? = k a field. Then
the Hilbert function of h,;(n) is polynomial for n sufficiently big.

Proof. Step 1: Let A* be a finitely generated graded ring, and
0 — M{ — M5 — M3 —0.

an exact sequence of finitely generated graded A*-modules. Then hMQ(n) =
har,(n) + hp(n). Therefore, hy(n) is polynomial M; if it is polynomial
for MjaMk'

Step 2: Recall that an A*-module is called cyclic if it is generated by one
element. Suppose that for any cyclic A*-module, the Hilbert function
hys(n) is polynomial for n > 0. Then it is polynomial for n > 0 for
any finitely generated graded A*-module. Indeed, every finitely generated
A*-module can be obtained as a successive extension of cyclic ones. Our
assumption means that h,;(n) is polynomial for n > 0 when M* is generated
by one element. Applying Step 1 and induction by the number of generators,

we prove that h,s(n) is polynomial for n > 0 for any number of generators.
4



Commutative Algebra, lecture 22 M. Verbitsky
Hilbert polynomial of a graded module (2)

Step 3: Let A* be a finitely generated graded ring, M™*™ be a torsion-free
A*-module, and a € Al Denote the map m — ma by L,. Consider an
« La x=+1 M*+1 _ Mm*tl

exact sequence 0 — ker L, — M* —= M e >»0. Let U = VAR
Suppose that the Hilbert function h;(n) and hker 1, 1S Polynomial for
n > 0. Since hy/(n+ 1) —hp(n) = hy(n) — hyerr,» this implies that hy(n)
iIs polynomial for n > 0 (Exercise 1).

Step 4: For a cyclic, graded, finitely generated k[t]-module, hp;(n) = const

for n > 0. We proved Theorem 1 for A* = k[t].

Step 5: Let A* be a graded ring, dim, Al = d. We prove that h,;(n) is
polynomial using induction in d. For d = 1 it follows from Step 4 and Step
2. Assume that for any graded ring B* generated by Bl with dim,, Bl < d, and
any finitely-generated B*-module U*, the Hilbert function hy(n) is polynomial
for n > 0.

Step 6: Let q € Al aL generator of ér*l, and
0 —» ker L, —s A* 2% A*t+1 >AA>k » 0 the exact sequence of Step 3.

x+1
The module ker Lg is not cyclic, but it is a module over an algebra AA* - hence

hker 1,(n) is polynomial whenever the Hilbert function of any ;@ -module is

*+1
polynomial. By induction assumption, the Hilbert function of f‘éj‘; -modules

is polynomial for n > 0. By Step 3, the same is true for M*. m
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Krull dimension and the degree of the Hilbert polynomial
Step 3 also brings the following corollary

COROLLARY: Let M be a graded A*~module and a € A* an element such
that the multiplication map Lg : M — M, Lq(x) = ax is injective. Denote
by N the module M/aM. Then deghy(n) =deghy(n) —1. =

THEOREM 2: Let R be a Noetherian local ring, m its maximal ideal, A :=
@,?;Om‘;‘—L its associated graded ring, and h4(n) := dim A™. Then the Hilbert
function h 4(n) is a polynomial for n > 0. Moreover, its dedgree d is equal
to the Krull dimension of R.

Proof. Step 1: By Nakayama lemma, Al is 1-dimensional and generates A*.
Then h4(n) Is polynomial by Theorem 1.

Step 2: Choose a minimal prime ideal ¢ C R in such a way that dmR/q =
dim R. The degree of the relevant Hilbert polynomials is the same, because
R4 is finite as an R-module. Replacing R by R/q if necessary, we may
assume that R has no zero divisors.
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Krull dimension and the degree of the Hilbert polynomial (2)

Step 3: Let R be an integral closure of R. By Cohen-Seidenberg, the Krull
dimension of R is equal to the Krull dimension of R. Denote by A the
associated graded ring of R. Then degh(n) = degh;(n), because A is a
finite extension of A. Replacing R by R if necessary, we may assume that
R i1s normal.

Step 4: Let 0 Cp1 CpoC ... Cpp € R be a chain of prime ideals of maximal
possible length. Since Ry, is a local integrally closed ring of Krull dimension
1, it is a discrete valuation ring, and its maximal ideal is principal. Therefore
in the ring Ry, we have p; = (p), where p € p;.

Step 5: The localization of R/(p) in p1 is a field, hence p1 is @ minimal prime
ideal in R/(p). Therefore the chain of prime ideals p1 C po> € ... € pn C R/(p)
is maximal, and R/(p) has Krull dimension dimR — 1.

Let a € Al = be the class represented by p. Using induction in dim R, we
may assume that deg hA/(a)(n) =dimR/(p) =dimR—1. By Theorem 1, Step
3, deg hA/(a)(n) = degh4(n) — 1. This gives deg h4(n) = deg hA/(a)(n) +1=
dmR/(p) +1=dimR. =

.



