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Associated graded ring (reminder)

DEFINITION: A multiplicative filtration on a ring A is a sequence A =

F0 ⊃ F1 ⊃ ... such that all Fi are closed under multiplication and satisfy FiFj ⊂
Fi+j. A ring equipped with a multiplicative filtration is called filtered. An

associated graded quotient of a filtered ring is ⊕∞i=0A
i, where Ai = Fi/Fi+1.

CLAIM: A = F0 ⊃ F1 ⊃ F2 ⊃ ... be a filtered ring, a1, a2 ∈ Fi and b1, b2 ∈ Fj.
Assume that a1 = a2 mod Fi+1 and b1 = b2 mod Fj+1. Then a1b1 = a2b2
mod Fi+1Fj + FiFj+1.

REMARK: Since Fi+1Fj + FiFj+1 ⊂ Fi+j+1, the product of a ∈ Fi/Fi+1

and b ∈ Fj/Fj+1 is well defined as an element of Fi+j/Fi+j+1. Therefore, the

associated graded ring ⊕∞i=0A
i is equipped with a natural ring structure.

This ring is called the associated graded ring.

EXAMPLE: Let I ⊂ A be an ideal. Then A ⊃ I ⊃ I2 ⊃ ... is a multiplicative

filtration. The corresponding associated graded ring A∗ :=
⊕∞
i=0

Ii

Ii+1 is called

the associated graded ring of the ideal I.
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Hilbert polynomial of a graded module (reminder)

DEFINITION: Let M∗ be a finitely generated graded module over a graded

ring A∗, with A0 = k a field. The Hilbert function of M∗ is hM(n) :=

dimkM
n.

THEOREM 1: Let M∗ be a finitely generated graded module over a graded

ring A∗ generated by a finite-dimensional space A1, with A0 = k a field. Then

the Hilbert function of hM(n) is polynomial for n sufficiently big.

THEOREM 2: Let R be a Noetherian local ring, m its maximal ideal, A :=⊕∞
i=0

mi

mi+1 its associated graded ring, and hA(n) := dimAn. Then the Hilbert

function hA(n) is a polynomial for n� 0. Moreover, its degree d is equal

to the Krull dimension of R.

COROLLARY: The Krull dimension of a local Noetherian ring R is equal

to the Krull dimension of its associated graded ring.
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Regular rings

THEOREM 3: Let R be a Noetherian local ring of Krull dimension d, m

its maximal ideal, and k := R/m its residue field. Then dimk(m/m2) > d.

Moreover, the following are equivalent:

(i) The associated graded ring of R is isomorphic to k[t1, ..., td];

(ii) dimk(m/m2) = d;

(iii) the ideal m can be generated by d elements.

Proof. Step 1: The implication (i) ⇒ (ii) is obvious, and (ii) ⇒ (iii) follows

from Nakayama lemma, which also implies that the associated graded ring

A∗ of R is generated by A1. Since A∗ is a quotient of k[A1], and dim k[A1] =

dimA1, we obtain dimkm/m
2) = dim k[A1] > dimA∗ = dimR = d. It remains

to prove (iii) ⇒ (i).

Step 2: Let µ : k[A1]−→A∗ be a natural surjective map, and I := ker µ.

Let t1, ..., td be the basis in A1; then k[A1] = k[t1, ..., td]. If I is non-empty,

there is an algebraic relation between ti ∈ A1, which implies d = dim trA∗ <
dim tr k[A1] = dimkA

1 = d. Therefore, I = 0 and µ is an isomorphism.

DEFINITION: A Noetherian local ring is called regular if (i)-(iii) holds.
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Integral closure of a Noetherian ring

DEFINITION: An affine variety X = Spec(A) is called smooth if all local
rings of maximal ideals in A are regular.

CLAIM: Discrete valuation rings are regular.

Proof: Indeed, the maximal ideal of the discrete valuation ring R is principal,
hence m/m2 = R/m = k.

COROLLARY: Let R be a ring of Krull dimension 1 and without zero
divisors. Then R is Dedekind if and only if it is smooth.

LEMMA 1: Let R be a Noetherian ring without zero divisors, and x ∈ k(R)
an element in its fraction field. Then x is integral over R if and only if
there is y ∈ R such that yxn ∈ R for all n > 0.

Proof: Let S = R[x] ⊂ k(X) be the subring generated by x. If x = ab, with
a, b ∈ R, we have bnS ⊂ R, hence bnxm ∈ R for all m ∈ Z>0.

Conversely, if yxn ∈ R, then aS ⊂ R; the R-module aS is finitely generated,
because R is Noetherian.
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Regular rings are integrally closed

PROPOSITION: Let R be a Noetherian local ring, m its maximal ideal,
and Gr(R) the associated graded ring. Suppose that Gr(R) contains no zero
divisors. Then R has no zero divisors. Moreover, if Gr(R) is integrally
closed then R is also integrally closed.

Proof. Step 1: The first statement follows from Krull theorem, which gives⋂
km

k = 0. If a product of two elements a ∈ mk\mk+1 and b ∈ ml\ml+1 vanishes,
the product of these elements modulo mk+1, ml+1 vanishes in Gr(R). Further
on, for any a ∈ mk\mk+1, we denote the class of a mod mk+1 by a ∈ Gr(R).

Step 2: Let x = a/b be integral over R, with a, b ∈ R. Let R1 := R/(b).
By Nakayama lemma,

⋂
km

kR1 = 0, hence
⋂
k(mk + (b)) = (b). To show that

a ∈ (b) it would suffice to prove that a ∈ mk + (b) for all k.

Step 3: We prove a ∈ mk + (b) using induction in k. Assume that a ∈
mk−1 + (b) = cb + d, where c ∈ mk−1 and d ∈ mk\mk+1. For some y ∈ R, and
for all n ∈ Z>0 we have yd

n

bn ∈ R (Lemma 1). This brings yd
n

bn ∈ R. Since Gr(R)

is integrally closed, this implies that d
b ∈ Gr(R), hence d = bz mod mk, and

a ∈ mk + (b).

COROLLARY: Regular rings are integrally closed.
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Kähler differentials

DEFINITION: Let R be a ring over a field k, and V an R-module. A k-linear

map D : R−→ V is called a derivation if it satisfies the Leibnitz identity

D(ab) = aD(b) + bD(a). The space of derivations from R to V is denoted

Derk(R, V ).

REMARK: Derk(R, V ) is an R-module, with a natural R-action.

DEFINITION: Let R be a ring over a field k. Define an R-module Ω1
kR (the

module of Kähler differentials) with the following generators and relations.

* Generators of Ω1
kR are indexed by elements of R; for each a ∈ R, the

corresponding generator of Ω1
kR is denoted da.

* Relations in Ω1
kR are generated by expressions d(ab) = adb+ bda, for all

a, b ∈ R, and dλ = 0 for each λ ∈ k.

EXERCISE: Prove that the map d : R−→Ω1
kR mapping a to da is a deriva-

tion.
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Universal property of Kähler differentials

CLAIM: Let V be an R-module, and D ∈ Derk(R, V ) a derivation. Then there
exists a unique R-module homomorphism ϕD : Ω1

kR−→ V mapping bda

to bD(a).

REMARK: Consider a category C of R-modules equipped with a derivation
(V,D : R−→ V ), and define morphisms in C as morphisms of R-modules
which commute with the derivation map. Then Ω1R is an initial object
in this category. This is called the universal property of the module of
Kähler differentials.

CLAIM: Derk(R, V ) = HomR(Ω1R, V ).

Proof: A composition of a derivation R
d−→ Ω1R and an R-module homo-

morphism Ω1R−→ V lies in Derk(R, V ). On the other hand, any derivation
ξ ∈ Derk(R, V ) is obtained this way, by the universal property.

COROLLARY: Derk(R) = (Ω1R)∗, where V ∗ := Hom(V,R).

EXERCISE: Prove that Ω1(C[t1, ..., tn]) is a free C[t1, ..., tn]-module gen-
erated by dt1, ..., dtn.
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Exact sequence of Kähler differentials

Let δ : I −→Ω1A take x to dx. Since d(xy) = yd(x)+xd(y), δ(I2) = 0 modulo

IΩ1A. Therefore, the map I/I2 δ−→ Ω1A⊗A B is well defined.

CLAIM: Let ϕ : A−→B be a surjective ring homomorphism, and I its

kernel. Then the following sequence of B-modules is exact: I/I2 δ−→
Ω1A⊗A B

ϕ−→ Ω1B −→ 0.

Proof: The composition δ ◦ ϕ clearly vanishes, and Ω1A ⊗A B
ϕ−→ Ω1B is

clearly surjective. The kernel of Ω1A−→Ω1B is generated by IΩ1A together

with d(I), hence the kernel of Ω1A⊗A B
ϕ−→ Ω1B it is equal to d(I).
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Exact sequence of Kähler differentials (2)

CLAIM 1: Let ϕ : A−→B be a surjective ring homomorphism, and I its

kernel. Assume that ϕ admits a section σ : B −→A. Then the sequence

0−→ I/I2 δ−→ Ω1A⊗A B
ϕ−→ Ω1B −→ 0

is exact.

Proof: Consider the map ρ : A−→ I/I2 taking x to x − σ(ϕ(x)). Since

(x− σ(ϕ(x)))(y − σ(ϕ(y))) ∈ I2, we have

xy + σ(ϕ(x))σ(ϕ(y)) = +xσ(ϕ(y)) + yσ(ϕ(x)).

Then

x(y − σ(ϕ(y))) + y(x− σ(ϕ(x))) = 2xy − xy − σ(ϕ(x))σ(ϕ(y))

= xy − σ(ϕ(x))σ(ϕ(y)).

Therefore, ρ is a derivation. Since ρ takes an element of I to itself,

the corresponding universal map Ω1A ⊗A B −→ I/I2 is by construction

inverse to δ. This implies that I/I2 δ−→ Ω1A⊗A B is injective.
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Zariski cotangent space

DEFINITION: Let m ⊂ R be a maximal ideal. The Zariski cotangent

space to SpecR in m is m
m2.

PROPOSITION: Let R be a ring over k, and m ⊂ R be a maximal ideal

which satisfies R
m = k. Then the Zariski cotangent space T ∗m SpecR is equal

to Ω1
kR⊗R

R
m.

Proof: Let R1 := R
m. Since R

m = k, the map R−→R1 has a section. Then the

exact sequence

0−→
m

m2
δ−→ Ω1

kR⊗R R
1 ϕ−→ 0 = Ω1

kR1

implies that m
m2 = Ω1R⊗R R1.

COROLLARY: If X is a smooth manifold, x ∈ X, and mx the ideal of all

smooth functions vanishing in x. Then m2
x is the ideal of all functions

f such that f(x) = 0 and df |x = 0. In particular, the natural map
mx
mx2 −→ T ∗xX mapping f to df |x is an isomorphism.

This explains the term “Zariski cotangent space”.
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Regular points of an algebraic variety

PROPOSITION: Let X ⊂ Cn be an affine variety defined by a system of

polynomial equations f1(z) = f2(z) = ... = fk(z) = 0, and Xx a localization

of B = OB in the maximal ideal mx associated with a point x ∈ X. Denote by

W ⊂ T ∗xCn the space generated by the differentials df1, ..., dfk. Then T ∗xX =
T ∗xCn
W . Moreover, Bx is regular if and only if dimX = n− dimW .

Proof: Let A = C[t1, ..., tn], and I the kernel of the natural surjection A−→B.

Consider the exact sequence I/I2 δ−→ Ω1A ⊗A B
ϕ−→ Ω1B −→ 0. Then

Ω1B ⊗A A
mx

=
Ω1A⊗A A

mx
δ(I/I2)

= 〈dt1,...,dtn〉
〈df1,..,dfk〉

. Therefore, the Zariski cotangent

space T ∗xX = Ω1B⊗A A
mx

= T ∗xCn
W is (n− dimkW )-dimensional. On the other

hand, Bx is regular if and only if dimT ∗xX = dimX (Theorem 3).
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Regular points and regular values

COROLLARY: Let X ⊂ Cn be an affine variety defined by a system of

polynomial equations f1(z) = f2(z) = ... = fk(z) = 0. Suppose that 0 is a

regular value of the map F (z) = (f1(z), f2(z), ..., fk(z)). Then T ∗xX = dimX

for any x ∈ X. In particular, all localizations of X in maximal ideals are

regular.

Proof: Since X is given by k equations, dimension of X is at least n− k. On

the other hand, dimT ∗xX = n−dimW = n−k as shown above. By Theorem 3,

dimT ∗xX > dimX, and the equality is realized precisely when x is regular.
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