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Associated graded ring (reminder)

DEFINITION: A multiplicative filtration on a ring A is a sequence A =
Fp D F1 D ... such that all F; are closed under multiplication and satisfy F;F; C
F’L’—I—j- A ring equipped with a multiplicative filtration is called filtered. An
associated graded quotient of a filtered ring is ©2 A", where A' = F;/F; 1.

CLAIM: A= Fy D F1 D F» D ... be a filtered ring, ay,ap € F; and by,bp € Fj.
Assume that a; = a» mod Fi—l—l and b; = bo mod Fj—l—l' Then a1b1 = asbs
mod Fi—l—le -+ FiFj_|_1.

REMARK: Since F;1F; + F;F;11 C F;1 41, the product of a € F;/F;14
and b € F;/F; 41 is well defined as an element of F; ;/F;1 ;41. Therefore, the
associated graded ring ©:2 A" is equipped with a natural ring structure.
This ring is called the associated graded ring.

EXAMPLE: Let I C A be an ideal. Then AD D I D ... is a multiplicative
filtration. The corresponding associated graded ring A* := @;ﬁ;oﬁl% IS called

the associated graded ring of the ideal I.
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Hilbert polynomial of a graded module (reminder)

DEFINITION: Let M* be a finitely generated graded module over a graded
ring A*, with AY = k a field. The Hilbert function of M* is hy(n) =
dimk M™.

THEOREM 1: Let M™* be a finitely generated graded module over a graded
ring A* generated by a finite-dimensional space Al, with A°? = k a field. Then
the Hilbert function of h,;;(n) is polynomial for n sufficiently big.

THEOREM 2: Let R be a Noetherian local ring, m its maximal ideal, A :=
@@Om‘;‘—il its associated graded ring, and h4(n) := dim A". Then the Hilbert
function h4(n) is a polynomial for n > 0. Moreover, its degree d is equal
to the Krull dimension of R.

COROLLARY: The Krull dimension of a local Noetherian ring R is equal
to the Krull dimension of its associated graded ring.
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Regular rings

THEOREM 3: Let R be a Noetherian local ring of Krull dimension d, m
its maximal ideal, and k := R/m its residue field. Then dim;(m/m?) > d.
Moreover, the following are equivalent:

(i) The associated graded ring of R is isomorphic to k[t1,...,t4];

(i) dimg(m/m?) = d;

(iii) the ideal m can be generated by d elements.

Proof. Step 1: The implication (i) = (ii) is obvious, and (ii) = (iii) follows
from Nakayama lemma, which also implies that the associated graded ring
A* of R is generated by A7. Since A* is a quotient of k[Al], and dim k[Al] =
dim Al, we obtain dim;m/m?) = dimk[Al] > dim A* = dim R = d. It remains
to prove (iii) = (i).

Step 2: Let u: k[Al] — A* be a natural surjective map, and I := ker .
Let ¢1,...,t; be the basis in Al; then k[Al] = k[tq,...,t;]. If I is non-empty,
there is an algebraic relation between t; € Al, which implies d = dimtr A* <
dimtrk[Al] = dim; Al = d. Therefore, I =0 and p is an isomorphism. =

DEFINITION: A Noetherian local ring is called regular if (i)-(iii) holds.
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Integral closure of a Noetherian ring

DEFINITION: An affine variety X = Spec(A) is called smooth if all local
rings of maximal ideals in A are regular.

CLAIM: Discrete valuation rings are regular.

Proof: Indeed, the maximal ideal of the discrete valuation ring R is principal,
hence m/m* =R/m=k. m

COROLLARY: Let R be a ring of Krull dimension 1 and without zero
divisors. Then R is Dedekind if and only if it is smooth. =

LEMMA 1: Let R be a Noetherian ring without zero divisors, and z € k(R)
an element in its fraction field. Then « is integral over R if and only if
there is y € R such that yx™ € R for all n > 0.

Proof: Let S = R[x] C k(X) be the subring generated by z. If x = ab, with
a,b € R, we have b"S C R, hence b"z™ € R for all m € 7>0.

Conversely, if yz™ € R, then aS C R; the R-module aS is finitely generated,

because R is Noetherian. m
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Regular rings are integrally closed

PROPOSITION: Let R be a Noetherian local ring, m its maximal ideal,
and Gr(R) the associated graded ring. Suppose that Gr(R) contains no zero
divisors. Then R has no zero divisors. Moreover, iIf Gr(R) is integrally
closed then R is also integrally closed.

Proof. Step 1: The first statement follows from Krull theorem, which gives
N m* = 0. If a product of two elements a € m*\m*T1 and b € m\m!T1 vanishes,
the product of these elements modulo m¥+1 m!i*1 vanishes in Gr(R). Further
on, for any a € m*\m#*1 we denote the class of « mod m**+1 by a € Gr(R).

Step 2: Let x = a/b be integral over R, with a,b € R. Let Ry := R/(b).
By Nakayama lemma, N m*R; = 0, hence Ni(m* 4+ (b)) = (b). To show that
a € (b) it would suffice to prove that a € m* + (b) for all k.

Step 3: We prove a € mF + (b) using induction in k. Assume that a €
mF—1 4+ (b)) = b+ d, Whae(:enl —1 and d € mF\mFt1, For some y € R, and

for all n € Z~9 we have ybn € R (Lemma 1). This brings ybn € R. Since Gr(R)
is integrally closed, this implies that £+ € Gr(R), hence d = bz mod m’“, and

acmf+(b). m

IS,

COROLLARY: Regular rings are integrally closed. =
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Kahler differentials

DEFINITION: Let R be a ring over a field k, and V an R-module. A k-linear
map D . R— V is called a derivation if it satisfies the Leibnitz identity
D(ab) = aD(b) 4+ bD(a). The space of derivations from R to V is denoted
Der.(R,V).

REMARK: Der,(R,V) is an R-module, with a natural R-action.

DEFINITION: Let R be a ring over a field k. Define an R-module Q,%R (the
module of Kahler differentials) with the following generators and relations.
* G@enerators of Q,}:R are indexed by elements of R; for each a € R, the
corresponding generator of Q,%R is denoted da.
* Relations in Q,%R are generated by expressions d(ab) = adb + bda, for all
a,b € R, and d\ = 0 for each X\ € k.

EXERCISE: Prove that the map d: R — Q} R mapping a to da is a deriva-
tion.
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Universal property of Kahler differentials

CLAIM: Let V be an R-module, and D € Deri(R, V) a derivation. Then there
exists a unique R-module homomorphism ¢p : QiR — V mapping bda
to bD(a).

REMARK: Consider a category C of R-modules equipped with a derivation
(V,D : R—YV), and define morphisms in C as morphisms of R-modules
which commute with the derivation map. Then QR is an initial object
in this category. This is called the universal property of the module of
Kahler differentials.

CLAIM: Der,(R,V) = Homp(QIR, V).

Proof: A composition of a derivation B -4+ QR and an R-module homo-
morphism Q1R —s V lies in Der.(R,V). On the other hand, any derivation
¢ € Der,(R,V) is obtained this way, by the universal property. =

COROLLARY: Der,(R) = (QIR)*, where V* := Hom(V, R).
EXERCISE: Prove that QI(C[tq,...,tn]) is a free C[tq,...,tn]-module gen-

erated by dtq,...,dty.
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Exact sequence of Kahler differentials

Let §: I — Q1A take z to dz. Since d(zy) = yd(z)+zd(y), §(I2) = 0 modulo
IQ1A. Therefore, the map /12 % QlA® 4 B is well defined.

CLAIM: Let o ©: A— B be a surjective ring homomorphism, and I its

kernel. Then the following sequence of B-modules is exact: I/I? LN

QlA®sB = QB —0.

Proof: The composition § o ¢ clearly vanishes, and Q1A®,4 B 2% QB is
clearly surjective. The kernel of Q1A — Q1B is generated by IQ1A together
with d(I), hence the kernel of Q1A®4 B -2 QB it is equal to d(I). =
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Exact sequence of Kahler differentials (2)

CLAIM 1: Let ¢ : A— B be a surjective ring homomorphism, and I its
kernel. Assume that ¢ admits a section ¢: B— A. Then the sequence

0——1/12 % Qlag, B % QB0

IS exact.

Proof: Consider the map p : A— I/I? taking z to =z — o(p(x)). Since
(z — o(e()))(y — o(p(y))) € I?, we have

zy + o(p(x))o(e(y)) = Fzo(v(y)) + yo(p(x)).

Then
z(y — o(e(y))) +y(z —o(e(z))) = 2zy —zy — o(p(x))o(e(y))
= zy — o (p(z))o(e(y)).
Therefore, p is a derivation. Since p takes an element of I to itself,

the corresponding universal map QA4 ® 4 B— I/I? is by construction
inverse to §. This implies that I/12 -%+ Q'A® 4 B is injective. m
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Zariski cotangent space

DEFINITION: Let m C R be a maximal ideal. The Zariski cotangent
space to SpecR in m is %

PROPOSITION: Let R be a ring over k, and m C R be a maximal ideal
which satisfies £ = k. Then the Zariski cotangent space T}, Spec R is equal

1 R

Proof: Let Ry := %. Since % = k, the map R — R1 has a section. Then the
exact sequence
m
0— % QIReor R % 0=QlR,

implies that % = Q'R@p R'. =

COROLLARY: If X is a smooth manifold, € X, and m, the ideal of all
smooth functions vanishing in z. Then m2 is the ideal of all functions
f such that f(z) = 0 and df|, = O. In particular, the natural map
me — T X mapping f to df|; is an isomorphism.

My

This explains the term “Zariski cotangent space”.
11



Commutative Algebra, lecture 22 M. Verbitsky

Regular points of an algebraic variety

PROPOSITION: Let X C C™ be an affine variety defined by a system of
polynomial equations f1(z) = f2(z) = ... = fi.(z) = 0, and X, a localization
of B = ©Op in the maximal ideal m; associated with a point x € X. Denote by
W C T;C" the space generated by the differentials dfq,...,df,. Then T X =
L.Z". Moreover, B, is regular if and only if dim X = n — dim W.

Proof: Let A = C|tq,...,tn], and I the kernel of the natural surjection A — B.

Consider the exact sequence I/12 %5 Ql'A®, B - QB —50. Then
1 A
("B ®A 4 = S/ = () Therefore, the Zariski cotangent

space T;X = Q'Be, A = 2" is (n— dim; W)-dimensional. On the other

hand, B, is regular if and only if dm7T;X = dim X (Theorem 3). =
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Regular points and regular values

COROLLARY: Let X C C™ be an affine variety defined by a system of
polynomial equations f1(z) = fo(z) = ... = fr(z) = 0. Suppose that O is a
regular value of the map F(z) = (f1(z), fo(2),..., fr(2)). Then T;X =dimX
for any x € X. In particular, all localizations of X in maximal ideals are

regular.

Proof: Since X is given by k equations, dimension of X is at least n — k. On
the other hand, dimT;X = n—dimW = n—k as shown above. By Theorem 3,
dimT;X > dim X, and the equality is realized precisely when =z is regular.
n
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