Commutative Algebra

lecture 23: Regular rings

Misha Verbitsky

http://verbit.ru/IMPA/CA-2022/

IMPA, sala 232

February 25, 2022

Associated graded ring (reminder)

DEFINITION: A multiplicative filtration on a ring A is a sequence $A = F_0 \supset F_1 \supset ...$ such that all F_i are closed under multiplication and satisfy $F_iF_j \subset F_{i+j}$. A ring equipped with a multiplicative filtration is called filtered. An associated graded quotient of a filtered ring is $\bigoplus_{i=0}^{\infty} A^i$, where $A^i = F_i/F_{i+1}$.

CLAIM: $A = F_0 \supset F_1 \supset F_2 \supset ...$ be a filtered ring, $a_1, a_2 \in F_i$ and $b_1, b_2 \in F_j$. Assume that $a_1 = a_2 \mod F_{i+1}$ and $b_1 = b_2 \mod F_{j+1}$. Then $a_1b_1 = a_2b_2 \mod F_{i+1}F_j + F_iF_{j+1}$.

REMARK: Since $F_{i+1}F_j + F_iF_{j+1} \subset F_{i+j+1}$, the product of $a \in F_i/F_{i+1}$ and $b \in F_j/F_{j+1}$ is well defined as an element of F_{i+j}/F_{i+j+1} . Therefore, the associated graded ring $\bigoplus_{i=0}^{\infty} A^i$ is equipped with a natural ring structure. This ring is called the associated graded ring.

EXAMPLE: Let $I \subset A$ be an ideal. Then $A \supset I \supset I^2 \supset ...$ is a multiplicative filtration. The corresponding associated graded ring $A^* := \bigoplus_{i=0}^{\infty} \frac{I^i}{I^{i+1}}$ is called **the associated graded ring of the ideal** I.

Hilbert polynomial of a graded module (reminder)

DEFINITION: Let M^* be a finitely generated graded module over a graded ring A^* , with $A^0 = k$ a field. The **Hilbert function** of M^* is $h_M(n) := \dim_k M^n$.

THEOREM 1: Let M^* be a finitely generated graded module over a graded ring A^* generated by a finite-dimensional space A^1 , with $A^0 = k$ a field. Then the Hilbert function of $h_M(n)$ is polynomial for n sufficiently big.

THEOREM 2: Let *R* be a Noetherian local ring, \mathfrak{m} its maximal ideal, $A := \bigoplus_{i=0}^{\infty} \frac{\mathfrak{m}^i}{\mathfrak{m}^{i+1}}$ its associated graded ring, and $h_A(n) := \dim A^n$. Then the Hilbert function $h_A(n)$ is a polynomial for $n \gg 0$. Moreover, its degree *d* is equal to the Krull dimension of *R*.

COROLLARY: The Krull dimension of a local Noetherian ring R is equal to the Krull dimension of its associated graded ring.

Regular rings

THEOREM 3: Let R be a Noetherian local ring of Krull dimension d, \mathfrak{m} its maximal ideal, and $k := R/\mathfrak{m}$ its residue field. Then $\dim_k(\mathfrak{m}/\mathfrak{m}^2) \ge d$. Moreover, the following are equivalent:

(i) The associated graded ring of
$$R$$
 is isomorphic to $k[t_1, ..., t_d]$;

(ii) dim_k($\mathfrak{m}/\mathfrak{m}^2$) = d;

(iii) the ideal \mathfrak{m} can be generated by d elements.

Proof. Step 1: The implication (i) \Rightarrow (ii) is obvious, and (ii) \Rightarrow (iii) follows from Nakayama lemma, which also implies that the associated graded ring A^* of R is generated by A_1 . Since A^* is a quotient of $k[A^1]$, and dim $k[A^1] = \dim A^1$, we obtain dim $_k \mathfrak{m}/\mathfrak{m}^2$) = dim $k[A^1] \ge \dim A^* = \dim R = d$. It remains to prove (iii) \Rightarrow (i).

Step 2: Let μ : $k[A^1] \longrightarrow A^*$ be a natural surjective map, and $I := \ker \mu$. Let $t_1, ..., t_d$ be the basis in A^1 ; then $k[A^1] = k[t_1, ..., t_d]$. If I is non-empty, there is an algebraic relation between $t_i \in A^1$, which implies $d = \dim \operatorname{tr} A^* < \dim \operatorname{tr} k[A^1] = \dim_k A^1 = d$. Therefore, I = 0 and μ is an isomorphism.

DEFINITION: A Noetherian local ring is called **regular** if (i)-(iii) holds.

Integral closure of a Noetherian ring

DEFINITION: An affine variety X = Spec(A) is called **smooth** if all local rings of maximal ideals in A are regular.

CLAIM: Discrete valuation rings are regular.

Proof: Indeed, the maximal ideal of the discrete valuation ring R is principal, hence $\mathfrak{m}/\mathfrak{m}^2 = R/\mathfrak{m} = k$.

COROLLARY: Let R be a ring of Krull dimension 1 and without zero divisors. Then R is Dedekind if and only if it is smooth.

LEMMA 1: Let *R* be a Noetherian ring without zero divisors, and $x \in k(R)$ an element in its fraction field. Then *x* is integral over *R* if and only if there is $y \in R$ such that $yx^n \in R$ for all n > 0.

Proof: Let $S = R[x] \subset k(X)$ be the subring generated by x. If x = ab, with $a, b \in R$, we have $b^n S \subset R$, hence $b^n x^m \in R$ for all $m \in \mathbb{Z}^{\geq 0}$.

Conversely, if $yx^n \in R$, then $aS \subset R$; the *R*-module aS is finitely generated, because *R* is Noetherian.

Regular rings are integrally closed

PROPOSITION: Let R be a Noetherian local ring, \mathfrak{m} its maximal ideal, and Gr(R) the associated graded ring. Suppose that Gr(R) contains no zero divisors. Then R has no zero divisors. Moreover, if Gr(R) is integrally closed then R is also integrally closed.

Proof. Step 1: The first statement follows from Krull theorem, which gives $\bigcap_k \mathfrak{m}^k = 0$. If a product of two elements $a \in \mathfrak{m}^k \setminus \mathfrak{m}^{k+1}$ and $b \in \mathfrak{m}^l \setminus \mathfrak{m}^{l+1}$ vanishes, the product of these elements modulo \mathfrak{m}^{k+1} , \mathfrak{m}^{l+1} vanishes in Gr(R). Further on, for any $a \in \mathfrak{m}^k \setminus \mathfrak{m}^{k+1}$, we denote the class of $a \mod \mathfrak{m}^{k+1}$ by $\underline{a} \in Gr(R)$.

Step 2: Let x = a/b be integral over R, with $a, b \in R$. Let $R_1 := R/(b)$. By Nakayama lemma, $\bigcap_k \mathfrak{m}^k R_1 = 0$, hence $\bigcap_k (\mathfrak{m}^k + (b)) = (b)$. To show that $a \in (b)$ it would suffice to prove that $a \in \mathfrak{m}^k + (b)$ for all k.

Step 3: We prove $a \in \mathfrak{m}^k + (b)$ using induction in k. Assume that $a \in \mathfrak{m}^{k-1} + (b) = cb + d$, where $c \in \mathfrak{m}^{k-1}$ and $d \in \mathfrak{m}^k \setminus \mathfrak{m}^{k+1}$. For some $y \in R$, and for all $n \in \mathbb{Z}^{>0}$ we have $y \frac{d^n}{b^n} \in R$ (Lemma 1). This brings $\underline{y} \frac{d^n}{\underline{b}^n} \in R$. Since Gr(R) is integrally closed, this implies that $\frac{d}{\underline{b}} \in Gr(R)$, hence $d = bz \mod \mathfrak{m}^k$, and $a \in \mathfrak{m}^k + (b)$.

COROLLARY: Regular rings are integrally closed.

Kähler differentials

DEFINITION: Let *R* be a ring over a field *k*, and *V* an *R*-module. A *k*-linear map $D : R \longrightarrow V$ is called **a derivation** if it satisfies **the Leibnitz identity** D(ab) = aD(b) + bD(a). The space of derivations from *R* to *V* is denoted $Der_k(R, V)$.

REMARK: $Der_k(R, V)$ is an *R*-module, with a natural *R*-action.

DEFINITION: Let *R* be a ring over a field *k*. Define an *R*-module $\Omega_k^1 R$ (the module of Kähler differentials) with the following generators and relations.

* **Generators** of $\Omega_k^1 R$ are indexed by elements of R; for each $a \in R$, the corresponding generator of $\Omega_k^1 R$ is denoted da.

* **Relations** in $\Omega_k^1 R$ are generated by expressions d(ab) = adb + bda, for all $a, b \in R$, and $d\lambda = 0$ for each $\lambda \in k$.

EXERCISE: Prove that the map $d : R \longrightarrow \Omega_k^1 R$ mapping a to da is a derivation.

Universal property of Kähler differentials

CLAIM: Let *V* be an *R*-module, and $D \in \text{Der}_k(R, V)$ a derivation. Then **there** exists a unique *R*-module homomorphism $\varphi_D : \Omega_k^1 R \longrightarrow V$ mapping *bda* to bD(a).

REMARK: Consider a category C of R-modules equipped with a derivation $(V, D : R \rightarrow V)$, and define morphisms in C as morphisms of R-modules which commute with the derivation map. Then $\Omega^1 R$ is an initial object in this category. This is called the universal property of the module of Kähler differentials.

CLAIM: $\operatorname{Der}_k(R, V) = \operatorname{Hom}_R(\Omega^1 R, V).$

Proof: A composition of a derivation $R \xrightarrow{d} \Omega^1 R$ and an *R*-module homomorphism $\Omega^1 R \longrightarrow V$ lies in $\text{Der}_k(R, V)$. On the other hand, any derivation $\xi \in \text{Der}_k(R, V)$ is obtained this way, by the universal property.

COROLLARY: $\operatorname{Der}_k(R) = (\Omega^1 R)^*$, where $V^* := \operatorname{Hom}(V, R)$.

EXERCISE: Prove that $\Omega^1(\mathbb{C}[t_1,...,t_n])$ is a free $\mathbb{C}[t_1,...,t_n]$ -module generated by $dt_1,...,dt_n$.

Exact sequence of Kähler differentials

Let $\delta : I \longrightarrow \Omega^1 A$ take x to dx. Since d(xy) = yd(x) + xd(y), $\delta(I^2) = 0$ modulo $I\Omega^1 A$. Therefore, the map $I/I^2 \xrightarrow{\delta} \Omega^1 A \otimes_A B$ is well defined.

CLAIM: Let $\varphi : A \longrightarrow B$ be a surjective ring homomorphism, and I its kernel. Then the following sequence of B-modules is exact: $I/I^2 \xrightarrow{\delta} \Omega^1 A \otimes_A B \xrightarrow{\varphi} \Omega^1 B \longrightarrow 0$.

Proof: The composition $\delta \circ \varphi$ clearly vanishes, and $\Omega^1 A \otimes_A B \xrightarrow{\varphi} \Omega^1 B$ is clearly surjective. The kernel of $\Omega^1 A \longrightarrow \Omega^1 B$ is generated by $I\Omega^1 A$ together with d(I), hence the kernel of $\Omega^1 A \otimes_A B \xrightarrow{\varphi} \Omega^1 B$ it is equal to d(I).

Exact sequence of Kähler differentials (2)

CLAIM 1: Let $\varphi : A \longrightarrow B$ be a surjective ring homomorphism, and *I* its kernel. Assume that φ admits a section $\sigma : B \longrightarrow A$. Then the sequence

$$0 \longrightarrow I/I^2 \stackrel{\delta}{\longrightarrow} \Omega^1 A \otimes_A B \stackrel{\varphi}{\longrightarrow} \Omega^1 B \longrightarrow 0$$

is exact.

Proof: Consider the map $\rho : A \longrightarrow I/I^2$ taking x to $x - \sigma(\varphi(x))$. Since $(x - \sigma(\varphi(x)))(y - \sigma(\varphi(y))) \in I^2$, we have

$$xy + \sigma(\varphi(x))\sigma(\varphi(y)) = +x\sigma(\varphi(y)) + y\sigma(\varphi(x)).$$

Then

$$\begin{aligned} x(y - \sigma(\varphi(y))) + y(x - \sigma(\varphi(x))) &= 2xy - xy - \sigma(\varphi(x))\sigma(\varphi(y)) \\ &= xy - \sigma(\varphi(x))\sigma(\varphi(y)). \end{aligned}$$

Therefore, ρ is a derivation. Since ρ takes an element of I to itself, the corresponding universal map $\Omega^1 A \otimes_A B \longrightarrow I/I^2$ is by construction inverse to δ . This implies that $I/I^2 \xrightarrow{\delta} \Omega^1 A \otimes_A B$ is injective.

Zariski cotangent space

DEFINITION: Let $\mathfrak{m} \subset R$ be a maximal ideal. The Zariski cotangent space to Spec R in \mathfrak{m} is $\frac{\mathfrak{m}}{\mathfrak{m}^2}$.

PROPOSITION: Let R be a ring over k, and $\mathfrak{m} \subset R$ be a maximal ideal which satisfies $\frac{R}{\mathfrak{m}} = k$. Then **the Zariski cotangent space** $T^*_{\mathfrak{m}}$ Spec R **is equal** to $\Omega^1_k R \otimes_R \frac{R}{\mathfrak{m}}$.

Proof: Let $R_1 := \frac{R}{\mathfrak{m}}$. Since $\frac{R}{\mathfrak{m}} = k$, the map $R \longrightarrow R_1$ has a section. Then the exact sequence

$$0 \longrightarrow \frac{\mathfrak{m}}{\mathfrak{m}^2} \xrightarrow{\delta} \Omega_k^1 R \otimes_R R^1 \xrightarrow{\varphi} 0 = \Omega_k^1 R_1$$

implies that $\frac{\mathfrak{m}}{\mathfrak{m}^2} = \Omega^1 R \otimes_R R^1$.

COROLLARY: If X is a smooth manifold, $x \in X$, and \mathfrak{m}_x the ideal of all smooth functions vanishing in x. Then \mathfrak{m}_x^2 is the ideal of all functions f such that f(x) = 0 and $df|_x = 0$. In particular, the natural map $\frac{\mathfrak{m}_x}{\mathfrak{m}_x^2} \longrightarrow T_x^* X$ mapping f to $df|_x$ is an isomorphism.

This explains the term "Zariski cotangent space".

Regular points of an algebraic variety

PROPOSITION: Let $X \subset \mathbb{C}^n$ be an affine variety defined by a system of polynomial equations $f_1(z) = f_2(z) = ... = f_k(z) = 0$, and X_x a localization of $B = \mathcal{O}_B$ in the maximal ideal \mathfrak{m}_x associated with a point $x \in X$. Denote by $W \subset T_x^* \mathbb{C}^n$ the space generated by the differentials $df_1, ..., df_k$. Then $T_x^* X = \frac{T_x^* \mathbb{C}^n}{W}$. Moreover, B_x is regular if and only if dim $X = n - \dim W$.

Proof: Let $A = \mathbb{C}[t_1, ..., t_n]$, and I the kernel of the natural surjection $A \longrightarrow B$. Consider the exact sequence $I/I^2 \xrightarrow{\delta} \Omega^1 A \otimes_A B \xrightarrow{\varphi} \Omega^1 B \longrightarrow 0$. Then $\Omega^1 B \otimes_A \frac{A}{\mathfrak{m}_x} = \frac{\Omega^1 A \otimes_A \frac{A}{\mathfrak{m}_x}}{\delta(I/I^2)} = \frac{\langle dt_1, ..., dt_n \rangle}{\langle df_1, ..., df_k \rangle}$. **Therefore, the Zariski cotangent space** $T_x^* X = \Omega^1 B \otimes_A \frac{A}{\mathfrak{m}_x} = \frac{T_x^* \mathbb{C}^n}{W}$ is $(n - \dim_k W)$ -dimensional. On the other hand, B_x is regular if and only if $\dim T_x^* X = \dim X$ (Theorem 3).

Regular points and regular values

COROLLARY: Let $X \subset \mathbb{C}^n$ be an affine variety defined by a system of polynomial equations $f_1(z) = f_2(z) = ... = f_k(z) = 0$. Suppose that 0 is a regular value of the map $F(z) = (f_1(z), f_2(z), ..., f_k(z))$. Then $T_x^*X = \dim X$ for any $x \in X$. In particular, all localizations of X in maximal ideals are regular.

Proof: Since X is given by k equations, dimension of X is at least n - k. On the other hand, dim $T_x^*X = n - \dim W = n - k$ as shown above. By Theorem 3, dim $T_x^*X \ge \dim X$, and **the equality is realized precisely when** x **is regular.**