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Complex variables 2: Sheaves and manifolds

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary

to follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

2.1 Smooth manifolds

Definition 2.1. A cover of a topological space X is a family of open sets {Ui}
such that

⋃
i Ui = X. A cover {Vi} is a refinement of a cover {Ui} if every Vi is

contained in some Ui.

Exercise 2.1. Show that any two covers of a topological space admit a common
refinement.

Definition 2.2. A cover {Ui} is an atlas if for every Ui, we have a map ϕi : Ui →
Rn giving a homeomorphism of Ui with an open subset in Rn. The transition
maps

Φij : ϕi(Ui ∩ Uj)→ ϕj(Ui ∩ Uj)

are induced by the above homeomorphisms. An atlas is smooth if all transition
maps are smooth (of class C∞, i.e., infinitely differentiable), smooth of class Ci

if all transition functions are of differentiability class Ci, and real analytic if all
transition maps admit a Taylor expansion at each point.

Definition 2.3. A refinement of an atlas is a refinement of the corresponding
cover Vi ⊂ Ui equipped with the maps ϕi : Vi → Rn that are the restrictions of
ϕi : Ui → Rn. Two atlases (Ui, ϕi) and (Ui, ψi) of class C∞ or Ci (with the same
cover) are equivalent in this class if, for all i, the map ψi ◦ ϕ−1

i defined on the
corresponding open subset in Rn belongs to the mentioned class. Two arbitrary
atlases are equivalent if the corresponding covers possess a common refinement
giving equivalent atlases.

Definition 2.4. A smooth structure on a manifold (of class C∞ or Ci) is an
atlas of class C∞ or Ci considered up to the above equivalence. A smooth
manifold is a topological manifold equipped with a smooth structure.

Remark 2.1. This is a terrible definition, but it is given in (almost) all textbooks.

Exercise 2.2 (*). Construct an example of two nonequivalent smooth structures
on Rn.

Exercise 2.3 (**). Prove that the cardinality of the set of smooth structures on
Rn is no more than continuum.
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Definition 2.5. A smooth function on a manifold M is a function f whose
restriction to the chart (Ui, ϕi) gives a smooth function f ◦ϕ−1

i : ϕi(Ui)−→ R for
each open subset ϕi(Ui) ⊂ Rn.

Remark 2.2. It is easier to define manifolds using sheaves.

Definition 2.6. A presheaf of functions on a topological space M is a collec-
tion of subrings F(U) ⊂ C(U) in the ring C(U) of all functions on U , for each
open subset U ⊂M , such that the restriction of every γ ∈ F(U) to an open subset
U1 ⊂ U belongs to F(U1).

Definition 2.7. A presheaf of functions F is called a sheaf of functions if these
subrings satisfy the following condition. Let {Ui} be a cover of an open subset
U ⊂ M (possibly infinite) and fi ∈ F(Ui) a family of functions defined on the
open sets of the cover and compatible on the pairwise intersections:

fi|Ui∩Uj = fj |Ui∩Uj

for every pair of members of the cover. Then there exists f ∈ F(U) such that fi
is the restriction of f to Ui for all i.

Remark 2.3. A presheaf of functions is a collection of subrings of functions
on open subsets, compatible with restrictions. A sheaf of fuctions is a presheaf
allowing “gluing” a function on a bigger open set if its restriction to smaller open
sets lies in the presheaf.

Definition 2.8. A sequenceA1 −→A2 −→A3 −→ ... of homomorphisms of abelian
groups or vector spaces is called exact if the image of each map is the kernel of
the next one.

Exercise 2.4. Let F be a presheaf of functions. Show that F is a sheaf if and
only if for every cover {Ui} of an open subset U ⊂M , the sequence of restriction
maps

0→ F(U)→
∏
i

F(Ui)→
∏
i 6=j

F(Ui ∩ Uj)

is exact, with η ∈ F(Ui) mapped to η
∣∣∣
Ui∩Uj

and −η
∣∣∣
Uj∩Ui

.

Exercise 2.5. Show that the following spaces of functions on Rn define sheaves
of functions.

a. Space of continuous functions.

b. Space of smooth functions.

c. Space of functions of differentiability class Ci.
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d. (*) Space of functions which are pointwise limits of sequences of continuous
functions.

e. Space of functions vanishing outside a set of measure 0.

Exercise 2.6. Show that the following spaces of functions on Rn are presheaves,
but not sheaves

a. Space of constant functions.

b. Space of bounded functions.

c. Space of functions vanishing outside of a bounded set.

d. Space of continuous functions with finite
∫
|f |.

Definition 2.9. A ringed space (M,F) is a topological space equipped with

a sheaf of functions. A morphism (M,F)
Ψ−→ (N,F′) of ringed spaces is a

continuous map M
Ψ−→ N such that, for every open subset U ⊂ N and every

function f ∈ F′(U), the function f ◦ Ψ belongs to the ring F
(
Ψ−1(U)

)
. An

isomorphism of ringed spaces is a homeomorphism Ψ such that Ψ and Ψ−1 are
morphisms of ringed spaces.

Remark 2.4. Usually the term “ringed space” stands for a more general concept,
where the “sheaf of functions” is an abstract “sheaf of rings,” not necessarily a
subsheaf in the sheaf of all functions on M . The above definition is simpler, but
not standard.

Exercise 2.7. Let M,N be open subsets in Rn and let Ψ : M → N be a smooth
map. Show that Ψ defines a morphism of spaces ringed by smooth functions.

Exercise 2.8. Let M be a smooth manifold of some class and let F be the space
of functions of this class. Show that F is a sheaf.

Exercise 2.9 (!). Let M be a topological manifold, and let (Ui, ϕi) and (Vj , ψj)
be smooth structures on M . Show that these structures are equivalent if and only
if the corresponding sheaves of smooth functions coincide.

Remark 2.5. This exercise implies that the following definition is equivalent to
the one stated earlier.

Definition 2.10. Let (M,F) be a topological manifold equipped with a sheaf of
functions. It is said to be a smooth manifold of class C∞ or Ci if every point in
(M,F) has an open neighborhood isomorphic to the ringed space (Rn,F′), where
F′ is a ring of functions on Rn of this class.
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Definition 2.11. A coordinate system on an open subset U of a manifold
(M,F) is an isomorphism between (U,F) and an open subset in (Rn,F′), where
F′ are functions of the same class on Rn.

Remark 2.6. In order to avoid complicated notation, from now on we assume
that all manifolds are Hausdorff and smooth (of class C∞). The case of other
differentiability classes can be considered in the same manner.

Exercise 2.10 (!). Let (M,F) and (N,F′) be manifolds and let Ψ : M → N be
a continuous map. Show that the following conditions are equivalent.

(i) In local coordinates, Ψ is given by a smooth map
(ii) Ψ is a morphism of ringed spaces.

Remark 2.7. An isomorphism of smooth manifolds is called a diffeomorphism.
As follows from this exercise, a diffeomorphism is a homeomorphism that maps
smooth functions onto smooth ones.

Exercise 2.11 (*). Let F be a presheaf of functions on Rn. Figure out a minimal
sheaf that contains F in the following cases.

a. Constant functions.

b. Functions vanishing outside a bounded subset.

c. Bounded functions.

Exercise 2.12 (*). Describe all morphisms of ringed spaces from (Rn, Ci+1) to
(Rn, Ci).

2.2 Complex manifolds

Definition 2.12. Let U ⊂ Cn be an open subset, with zi = xi +
√
−1yi the

standard coordinate system. Standard almost complex structure operator is
a map I : TU −→ TU such that I(d/dxi) = d/dyi, I(d/dyi) = −d/dxi. We extend
I to the cotangent bundle in the usual way. Using the eigenvalue decomposition
for I, we define the Hodge decomposition Λ1(U,C) = Λ1,0(U)⊕Λ0,1(U), with
I acting on Λ1,0(U) as

√
−1 and on Λ0,1(U) as

√
−1. A function f : U −→ C is

called holomorphic if df ∈ Λ1,0(U).

Remark 2.8. Let U ⊂ Cn be an open subset, and OU the ring of holomorphic
functions. Clearly, OU is a sheaf of rings of (complex-valued) functions on U .

Definition 2.13. A complex manifold is a ringed space which is locally iso-
morphic to (U,OU ), where U ⊂ Cn is an open subset and OU denotes the sheaf of
holomorphic functions on U
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Definition 2.14. Coordinate system on an open subset U ⊂ M of a complex
manifold is an isomorphism between U , considered as a ringed space, and (B,OB),
where B ⊂ Cn is an open subset. The coordinates z1, ..., zn on B are called
coordinate functions.

Exercise 2.13. Let U, V be open subsets on a complex manifold equipped with
coordinate systems φ : U −→ Cn, ψ : V −→ Cn. Consider a map of open subsets
of Cn (“the gluing map”), considered as a map from an open subset of Cn to
another open subset of Cn, ψφ−1 : φ(U ∩ V )−→ ψ(U ∩ V ). Prove that it is
holomorphic.

Exercise 2.14 (*). Let f1, ..., fn be holomorphic functions on a complex mani-
fold m, dimCM = n. Assume that the differentials df1, ..., dfn are linearly inde-
pendent in x ∈ M . Prove that there exists a coordinate system U 3 x such that
f1, ..., fn are coordinate functions.

Exercise 2.15 (!). Let (M,OM ) be a connected complex manifold, and f, g two
non-zero holomorphic functions. prove that fg 6= 0.

2.3 Almost complex manifolds.

Definition 2.15. Almost complex structure on a smooth manifold M is an
operator I ∈ EndTM satisfying I2 = − IdTM . Then (M, I) is called an almost
complex manifold. Hodge decomposition on a cotangent bundle to an almost
complex manifold is the decomposition Λ1(M)⊗R C = Λ1,0(M)⊕Λ0,1(M), where

I
∣∣∣
Λ1,0(M)

=
√
−1, and I

∣∣∣
Λ0,1(M)

= −
√
−1. Function f : M −→ C on an almost

complex manifold is called holomorphic if df ∈ Λ1,0(M).

Remark 2.9. An almost complex structure on any open subset in Cn was given
in Definition 1.12.

Exercise 2.16. Let f be a function on Cn which restricts to any line C ⊂ Cn

holomorphically. Prove that f is holomorphic.

Definition 2.16. A subset X ⊂ M is called a complex analytic subset if
it is locally obtained as a set of common zeroes of a collection of holomorphic
functions (locally defined). In other words, for any x ∈ X there exists an open
neighbourhood U ⊂ M containing x and a collection of holomorphic functions
such that X is the set of common zeroes of this collection.

Exercise 2.17. Let f : C−→ C be a smooth function. Prove that it is holomor-
phic if and only if its graph is a complex-analytic subset in C2.

Issued 08.04.2019 – 5 – Handouts version 1.1, 12.04.2019



Complex variables 2: Sheaves and manifolds Geometria Algébrica I, Misha Verbitsky

Definition 2.17. Let (M, IM ) and (N, IN ) be almost complex manifolds, and
f : M −→N a smooth map. It is called holomorphic if f∗(Λ1,0(N)) ⊂ Λ1,0(M).

Exercise 2.18. Prove that a composition of holomorphic maps is holomorphic.

Hint. Identify T 1,0(M) with the tangent bundle TM using the projection of TM
to T 1,0M along T 0,1M . This defines a complex structure on TM = (Λ1(M))∗.
Prove that a map f : M −→N is holomorphic if and only if is differential is
complex linear with respect to this complex structure on TM , TN .

Exercise 2.19. Let (M, I) be an almost complex manifold and f : M −→ C a
function. Consider the standard almost complex structure on C Prove that f is a
holomorphic function if and only if f is holomorphic as a map of almost complex
manifolds.

Exercise 2.20. Let M ⊂ Cm, N ⊂ Cn be open subsets, and f : M −→N a
smooth map. Assume that for any holomorphic function on N , its pullback f∗φ
is holomorphic on M . Prove that f is holomorphic.

Definition 2.18. An almost complex manifold (M, I) is called integrable if M
ringed by the sheaf of holomorphic function is a complex manifold.

Exercise 2.21 (!). Let (M, I) and (N, I) be integrable almost complex mani-
folds. Prove that any holomorphic map (M, I)−→ (N, I) defines a morphism of
complex manifolds.

Hint. Use the previous exercise.

Exercise 2.22. Let (M,OM ) be a complex manifold. Prove that M admits a
unique almost complex structure I such that OM is the sheaf of holomorphic
functions on (M, I).

Exercise 2.23 (*). Let (M, I) be an almost complex manifold such that for each
m ∈ M there exists a neighbourhood U 3 m and a collection of holomorphic
functions f1, ..., fn on U such that their differentials df1, ..., dfn generate Λ1,0

m (M).
Prove that the almost complex structure I is integrable.

Exercise 2.24 (**). Prove that a holomorphic function on an almost complex
manifold cannot have a strict maximum.
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