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Complex variables 3: Weierstrass preparation theorem

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary

to follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

3.1 Germs of holomorphic functions

Definition 3.1. Let U,U’ C C" be neighbourhoods of 0 and f € Oy, f' € Oy
holomorphic functions. We say that f and f’ have the same germ, f ~ f’ if

f unu’ - f/ unu’
0,f € Op). An equivalence class is called germ of a holomorphic function.
We always consider germs as holomorphic functions defined in a neighbourhood
of 0 € C". The space of germs in 0 of holomorphic functions on C" is denoted
Oo,cr or O,. In the same way one defines the space of germs O, ps of functions
in x € M, where M is a complex manifold.

. Clearly, ~ gives an equivalence relation on the set of pairs (U >

Remark 3.1. Clearly, the equivalence relation ~ is compatible with multiplica-
tion and addition. Therefore, ©Op c» is a ring.

Exercise 3.1. Let f be a holomorphic functions on a ball B C C” which vanishes
in an open subset U C B. Prove that f = 0.

Exercise 3.2. Let U C V be connected open subsets of a complex manifold, and
H°(Oy), H°(Oy) the rings of holomorphic functions on U,V. Prove that the
restriction map H°(Op) — HY(Oy) is injective.

Definition 3.2. A ring R’ D R is called finitely generated over a ring R if it
is isomorphic to a quotient ring R[ty, ..., t,] for some n > 0.

Exercise 3.3 (*). Prove that the ring ©,, of germs of holomorphic functions is
not finitely generated over C for any n > 0.

Definition 3.3. Formal power series in variables t1, ..., ¢, is a sum

o
> Pity, e tn),
=0

where P; are homogeneous polynomials of degree i. Addition of power series is
defined componentwise, multiplication is defined via

(iPi(tl,...,tn)> (i@i(tl,...,tn)> = iRi(tl,...,tn)
1=0 =0 =0
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where Rq(t1,....tn) = D2 jmq Pi(t1, s 1) Qj(t1, -oos ).

Exercise 3.4. Prove that the space of power series is a ring.

Exercise 3.5. Construct an injective ring homomorphism from ©,, to C[[t1, ..., t,]].
Exercise 3.6. Prove that ©,, has no zero divisors.

Definition 3.4. A ring R is called local if it contains an ideal I C R such that
all elements r ¢ I are invertible.

Exercise 3.7. Prove that the ring ©,, is local.

Exercise 3.8 (*). Prove that the ring C[[t1, ..., t,]] is not finitely generated over
©, C C[[tl, ...,tn“.

3.2 Principal part of a germ of holomorphic function

Definition 3.5. Let f € ©,, be a germ of holomorphic function on C”. Write its
Taylor series f(z) = > .2y Pi(t1,...,t,), where P; are homogeneous polynomials
of degree i. We say that f has zero of order (or of multiplicity) & in O if
Py = .. = P,_1 = 0. In this situation principal part if the function f is the
homogeneous polynomial P.

Exercise 3.9 (!). Let ®(t1,...,tn) = Fi(t1,..-,tn)s .y Fn(t1, ..., ) be the holo-

morphic coordinate change around 0, with F;(0,...,0) = 0, and A := (iﬂ?) its

diferential. Prove that

a. For any germ f € ©,, which has 0 of multiplicity &, the function ®*(f) has
zero of the same multiplicity.

b. The principal part of ®*(f) is obtained from the principal part of f by action
of A.

Hint. Write ® as a composition of A and a map
(tl, ceny tn) — Gl(tl, ceey tn), ceey Gn(tl, ceny tn),
where G; = t; + P;(t1,...,t,), and all P; have zeroes in 0 with multiplicity > 2.

Remark 3.2. For any germ F' € ©,,, the expression F'(0, z,,) denotes F'(0,0,0...,0, z,).
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Exercise 3.10 (!). Let F' € O,, be a germ of holomorphic function with zero of

multiplicity k. Prove that limO % = Q(0, ..., 1), where @ is the principal part
2Zn— n

of F.

Exercise 3.11 (!). Let @ be a non-zero homogeneous polynomial on tg, ..., tn,
and V(Q) its zero set, which we consider as a subset in CP".

a. Prove that CP™\V (Q) is non-empty.

b. Prove that V(Q) C CP™ is a set of measure 0.

Exercise 3.12. Let Q1,...,@Qp, ... € C[z1, ..., 2n+1] — be a countable set of homoge-
neous polynomials, and Z1, ..., Zy, ... C CP" their zero sets. Prove that CP™\ | Z;
is non-empty.

Exercise 3.13. Let f1,..., fn,... € O, be a countable collection of germs, which
vanish with multiplicity ki, ks,.... Prove that there exists a coordinate system
21, .y 2n, such that lim £O2n) £ 0 for all i.

e U
Exercise 3.14 (**). Let f € O, be a germ with zero of multiplicity 2. Assume
that its principal part is a non-degenerate quadratic form. Prove “the Morse
lemma”: for some coordinate system zi, ..., z,, the function f is written as f =

> 7

Exercise 3.15 (**). Let f € O3 be a germ of holomorphic function on C3. Prove
that f is polynomial in appropriate coordinate system, or find a counterexample.

3.3 Newton formula

Definition 3.6. Let ¢; € Z[ay, ..., ;] be coefficients of a polynomial t" +et" 1 +
e et + e, = H?Zl(t + «;). Then e; are called elementary symmetric
polynomials on «;. Newton polynomials are p; := > ", ozg . Complete ho-
mogeneous symmetric polynomial of degree k is h; obtained as a sum of
all homogeneous monomials of degree k. The corressponding generating func-
tions are formal series E(t) := > 1" je;t!, P(t) := Y22 pit?, H(t) := > 50, hit' €
Zlag, ..., an][[t]].

Exercise 3.16. Prove that H(t) = [}, 1

l—tai :

Exercise 3.17. Prove that E(t) =[] (1 + tay).
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Exercise 3.18. Prove that H(t)E(—t) = 1.

E'(-t) _ n a;
=—2in T—ta;-

E(—1)

Exercise 3.19. Prove that

E'(—t)

Exercise 3.20. Prove that P(t) = —t ek

Exercise 3.21. Prove that p; can be expressed as polynomials of e; (with integer
coefficients).

Exercise 3.22. Prove that h; can be expressed as polynomials of e; with integer
coefficients. Prove that e; can be expressed as polynomials of h; with integer
coefficients.

Exercise 3.23. (Newton formula) Prove that ke, = ¥ (—1)ie,_ip;.

=

Hint. Use the formula P(t) = —t g((:tt)).

Exercise 3.24 (!). Prove that e; are expressed as polynomials on p; with rational
coefficients.

Exercise 3.25 (*). Prove that khy = Z;“:l hi—ipi.

3.4 Logarithmic derivative and Rouché theorem
Exercise 3.26 (!). Let f be a holomorphic function on a disk, non-zero every-
where on its boundary 0A, and Si(f) := T\lﬁ faA fTIzkdz. Prove that Si(f) =

> diaf, where «; are all zeros of f, and d; their multiplicities.

Exercise 3.27. (Rouché theorem) Let f; be a family of holomorphic functions on
a disk A, continuously depending on a parameter ¢t € R and non-zero everywhere
on its boundary OA. Prove that the number of zeros of f; in A is constant.

Hint. Use the previous exercise.

Exercise 3.28. Prove that all zeros of the polynomial f(z) = z°+ 323+ 7 belong
to a disk |z| < 2.

z

Exercise 3.29. Prove that the equation z 4+ e™% — 10 = 0 has a unique solution

with ®z > 0.
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Exercise 3.30 (!). Let F(z,y) C Oaxa be a holomorphic function of two com-
plex variables, having no zeros in the set |z| = 1, and ¢(x) a holomorphic function
on a unit disk A C C. Consider a function ® mapping yo € A to > d;¢(«;), where
a; are all zeros of F(z,yp) in the disk |z| < 1, and d; their multiplicities. Prove
that ® is holomorphic.

Exercise 3.31 (*). Let f; be a continuous family of non-constant holomorphic
functions on a disk, and ¢ € [0, 1] a real parameter. Let S be the set of all ¢ such
that f; is injective. Prove that S is closed in [0, 1].

Hint. Use Rouché theorem.

3.5 Weierstrass preparation theorem

Definition 3.7. Let z1, ..., z; be coordinates in C*. Denote the disk of radius r
in C* by B,(21,...2n_1).

Exercise 3.32. Let F' be an analytic function in a neighbourhood of 0 in C",

such that hm()% # 0,00. Consider the projection map II : C* — C*!
Zn—r

n

(215 ey 2n) = (215 oey Zn—1)-

a. (1 Prove that for an appropriate pair r,7’, the restriction of F to the
polydisk A(n — 1,1) := B.(21, ..., 2n—1) X A (2,) nowhere vanishes on the
set TT7 Y (A, (zy,), where OA,/(2,) — is the boundary of the disk.

b. (1) Prove that in this case the restriction of F' to this polydisk has
precisely k zeros aq, ..., ay on each fiber of II.

c. ()  Prove that Zle a? is a holomorphic function on B, (z1, ..., 2n—1)-

d. () Prove that any elementary symmetric polynomial on «; gives a

holomorphic function on By (21, ..., 2p—1).

Hint. For the last statement use the Newton formula to express the elementary
symmetric polynomials through p;.

Definition 3.8. A Weierstrass polynomial is a function f € O,_1[z,], that is,
function which is polynomial in last variable, with coefficients, which are analytic
and depend only on the first n — 1 variables.
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Exercise 3.33 (!). Let F' be an analytic function in a neighbourhood of 0 in C",
such that limow # 0,00. Consider the projection map II : C? — C*!
—

2 ]
(21, ey 2n) — (21, ..y 2n—1), and let P(z,) € O,_1[z,] be a Weierstrass polyno-
mial, which is expressed as P(z,) = Zf:() e;2, where e; are elementary symmet-
ric polynomial on the zeros aj, ..., o defined in the previous exercise. Prove that
F = P(z,)u, where u is a germ of an invertible holomorphic function.

Exercise 3.34 (!). Let F' € O,, be a germ of analytic function.

a. Prove that in appropriate coordinate system, one has F = uP(z,), where
k

P(zy) is a Weierstrass polynomial of degree k, such that P(0,...,0, z,) = 2.
b. Prove that k is equal to the multiplicity of zero of F.
Definition 3.9. In this case, P(z,) is called the Weierstrass polynomial if F'.

Exercise 3.35 (!). Let F1,...,F;,... € O, be a collection of germs of analytic
functions. Prove that in appropriate coordinate system, all F; can be written as
F; = u;P;(z,), where P;(z,) is a Weierstrass polynomial.

Exercise 3.36. Consider a function f(z,w) = wz? + (1 + w?)z + w(1 + w?) on
C2. Compute its Weierstrass polynomial.

Hint. Express z through w by solving the quadratic equation f(z,w) = 0.
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