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Complex variables 6: Galois theory 1

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not

necessary to follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for

further work.

Remark 6.1. All rings in the sequel are assumed commutative, associative and
with unit.

6.1 Artinian rings

Remark 6.2. In this assignment, algebra over a field k denotes a vector space
over a field k with k-linear, commutative multiplication, possibly without unity.
A ring is a commutatove ring with unity. Finite field extension [K : k] of
field K over a field k ⊂ K is a field K which contains a subfield k, which is
finite-dimensional as a vector space over k.

Definition 6.1. Let R be a commutative algebra with unity over a field k. We
say that R is Artinian ring over k if R is finite-dimensional as a vector space
over k.

Remark 6.3. Let A ∈ EndV be a linear endomorphism of a finite-dimensional
vector space V over k. Consider the subalgebra k[A] ⊂ EndV generated by
unity and A. Clearly, k[A] is an Artinian ring.

Exercise 6.1 (!). Let R be an Artinian ring without zero divisors. Prove that
R is a field.

Hint. Prove that any injective endomorphism of a finite-dimensional space is
invertible. Use this to find x−1 for any given x ∈ R.

Exercise 6.2. Prove that any prime ideal in an Artinian ring is maximal.

Hint. Use the previous exercise.

Definition 6.2. An Artinian ring is called semisimple if it does not contain
non-zero nilpotents.

Definition 6.3. Let R1, . . . , Rn be algebras over a field. Consider the direct
sum

⊕
i Ri with the natural (componentwise) addition and multiplication. This

algebra is called the direct sum of R1, . . . , Rn.

Exercise 6.3. Prove that the direct sum of semisimple Artinian rings is semisim-
ple.

Exercise 6.4. Let v ∈ R be an element of a finite-dimensional algebra R over
k. Consider a subspace k[v] ⊂ R generated by 1, v, v2, v3, . . . . Suppose that
dim k[v] = n. Prove that P (v) = 0 for a polynomial P = tn + an−1t

n−1 + . . .
with coefficients in k. Prove that this polynomial is unique.
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Definition 6.4. This polynomial is called the minimal polynomial of v ∈ R.

Exercise 6.5. Let v ∈ R be an element of an Artinian ring over k, and P (t)
its minimal polynomial. Consider the subalgebra k[v] ⊂ R generated by v and
k. Prove that R[v] is isomorphic to the ring k[t]/(P ) of residues modulo P (t).

6.2 Idempotents

Definition 6.5. Suppose that v ∈ R satisfies v2 = v. Then v is called an
idempotent.

Exercise 6.6. Let e ∈ R be an idempotent in a ring. Prove that 1 − e is also
an idempotent. Prove that a product of idempotents is an idempotent.

Exercise 6.7. Let e ∈ R be an idempotent in a ring. Consider the space
eR ⊂ R (image of the multiplication by e. Prove that eR is a subalgebra in R,
e is unity in eR, and R = eR⊕ (1− e)R.

Exercise 6.8 (!). Let R = k[t]/P , where P ∈ k[t] is a polynomial decomposing
as a product P = P1P2 . . . Pn of coprime polynomials. Prove that there exists
an isomorphism R−→

⊕
i k[t]/Pi mapping t to (t, t, . . . , t).

Hint. Use the Chinese remainder theorem.

Exercise 6.9 (!). Let R be a semisimple Artinian ring without non-unit idem-
potents. Prove that it is a field.

Hint. Suppose that R is not a field. Consider a subalgebra k[x] ⊂ R generated
by a non-invertible element x, and apply the previous exercise.

Definition 6.6. We say that idempotents e1, e2 ∈ R are orthogonal if e1e2 =
0.

Exercise 6.10. Let e2, e3 ∈ R be orthogonal idempotents. Prove that e1 :=
e2 + e3 is also an idempotent satisfying e2, e3 ∈ e1R e1R = e2R⊕ e3R.

Exercise 6.11. Let char k 6= 2, and e1, e2, e3 idempotents in an algebra R over
k. Suppose that e1 = e2 + e3. Prove that e2, e3 are orthogonal.

Definition 6.7. An idempotent e ∈ R is called indecomposable if there are
no non-zero orthogonal idempotents e2, e3 such that e = e2 + e3.

Exercise 6.12 (!). Let R be a semisimple Artinian algebra, and e ∈ R a non-
decomposable idempotent. Prove that eR is a field.

Exercise 6.13 (!). Let R be a semisimple Artinian ring over a field k, char k 6=
2. Prove that 1 can be decomposed to a sum of indecomposable orthogonal
idempotents, 1 =

∑r
i=1 ei. Prove that such a decomposition is unique.
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Hint. To prove existence, take an idempotent e ∈ R, decompose R to a direct
sum of two subrings, R = eR ⊕ (1 − e)R, and use induction in dimk R. For
uniqueness, take two different orthogonal decompositions, 1 =

∑r
i=1 ei, and

1 =
∑s

j=1 fj , and prove that ei =
∑s

j=1 eifj is an orthogonal decomposition.

Exercise 6.14 (!). Let R be a semisimple Artinian ring over a field k, char k 6=
2. Prove that R is isomorphic to a direct sum of fields. Prove that this decom-
position is unique.

Hint. Use the previous exercise.

Exercise 6.15 (*). Is it true when char k = 2?

Exercise 6.16 (*). Let R be an Artinian ring over a field k, char k 6= 2, and
1 = e1 + · · ·+ en a decomposition of 1 to a sum of indecomposable orthogonal
idempotents. Prove that R has precisely n prime ideals.

6.3 Trace form

Definition 6.8. Let R be an algebra over a field k. A bilinear symmetric form
g on R is called invariant, if g(x, yz) = g(xy, z) for all x, y, z ∈ R.

Remark 6.4. If R contains unity, then for any invariant form g, we have
g(x, y) = g(xy, 1). This means that g is uniquely determined by a linear func-
tional x−→ g(x, 1).

Exercise 6.17. Let R be an Artinian ring equipped with a bilinear invariant
form g, and m an ideal in R. Prove that its orthogonal complement m⊥ is also
an ideal.

Exercise 6.18 (*). Find an Artinian ring which does not admit a non-degenerate
invariant bilinear form.

Definition 6.9. Let R be an Artinian ring over k. Consider the bilinear form
a, b−→ Tr(ab), where Tr(ab) is the trace of the endomorphism Lab ∈ Endk R,

x
Lab−→ abx. This form is called the trace form, denoted Trk(ab).

Exercise 6.19 (*). Let A be a linear operator on an n-dimensional vector
space of characteristic 0, such that TrA = TrA2 = ... = TrAn = 0. Prove that
A is nilpotent.

Exercise 6.20 (!). Let [K : k] be a finite field extension in characteristic 0.
Prove that the trace form is always non-degenerate.

Hint. Prove that Trk(x, x−1) = dimk K.

Definition 6.10. A finite field extension [K : k] with non-degenerate trace
form is called separable.
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Exercise 6.21 (*). Find an example of non-separable finite field extension in
characteristic p.

Exercise 6.22 (!). Let R be an Artinian ring over k with non-degenerate trace
form. Prove that R is semisimple. Prove that for char k = 0, the trace form is
non-degenerate on any semisimple Artinian ring.

6.4 Tensor products of field extensions

Exercise 6.23. Let A, B be rings over a field k.

a. Prove that there exists a multiplicative operation (A ⊗k B) × (A ⊗k

B)−→A⊗k B, mapping a⊗ b, a′ ⊗ b′ to aa′ ⊗ bb′.

b. Prove that this operation defines the ring structure on A⊗k B.

Definition 6.11. The ring A⊗kB is called the tensor product of the rings
A and B.

Exercise 6.24. Let R,R′ be Artinian rings over k, and g, g′ the trace forms on
R,R′. Consider the tensor product R ⊗k R′, and the bilinear symmetric form
g ⊗ g′ on R ⊗ R′, acting as g ⊗ g′(a ⊗ a′, b ⊗ b′) := g(a, a′)g′(b, b′). Prove that
g ⊗ g′ is equal to the form a, b−→ Tr(ab).

Exercise 6.25 (!). Prove that the tensor product of semisimple Artinian rings
is semisimple if char k = 0.

Hint. Use the previous exercise.

Exercise 6.26. Let [K1 : k], [K2 : k] be finite extensions, char k = 0. Prove
that the algebra K1 ⊗k K2 is semisiple.

Exercise 6.27. Let P1(t), P2(t) ∈ k[t] be polynomials over k, and Ki := k[t]/(Pi).
Prove that K1 ⊗K2

∼= K1[t]/Q(t) ∼= K2[t]/P (t).

Exercise 6.28. Let P (t) ∈ Q[t] be a polynomial which has precisely r real
roots and 2s complex roots which are not real, all roots distinct. Show that

(Q[t]/P )⊗Q R =
⊕
s

C⊕
⊕
r

R.

Exercise 6.29 (*). Find two non-trivial finite extensions [K1 : Q], [K2 : Q]
such that K1 ⊗Q K2 is also a field.

Exercise 6.30 (*). Find two finite extensions [K1 : k], [K2 : k], char k = p
such that K1 ⊗K2 is not semisimple.
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