Complex variables 7: Artin's primitive element theorem

Rules: This is a class assignment for the next week. Exercises with [*] are extra hard and not necessary to follow the rest. Exercises with [!] are non-trivial, fundamental and necessary for further work.

Remark 7.1. In the sequel, we assume that char k = 0 unless stated otherwise.

7.1 Galois extensions

Exercise 7.1. Let $P(t) \in K[t]$ be a degree *n* polynomial with *n* pairwise distinct roots in *K*. Prove that the ring K[t]/(P) is isomorphic as a ring to the direct sum of *n* copies of *K*.

Definition 7.1. Let [K : k] be a finite extension of a field k. We say that [K : k] is a **Galois extension** if $K \otimes_k K$ is isomorphic (as a ring) to the direct sum of several copies of K.

Remark 7.2. A finite extension [K : k] has degree *n* if *K* is *n*-dimensional as a vector space over *k*.

Exercise 7.2. Let $[K : \mathbb{Q}]$ be a degree 2 field extension. Prove that it is a Galois extension.

Hint. Show first that $K \otimes_k K$ is a direct sum of fields.

Exercise 7.3 (*). Let p be a prime number, Prove that for any root of unity of degree p, the extension $[\mathbb{Q}[\zeta] : \mathbb{Q}]$ is Galois.

Exercise 7.4. Let $P \in k[t]$ be a polynomial of degree n over a field k. Let $K_1 = k$, and consider a sequence of field extensions $K_l \supset K_{l-1} \supset \cdots \supset K_1$, obtained inductively as follows. Suppose that K_j is already constructed. Decompose P onto irreducible multipliers $P = \prod P_i$ over K_j . If all P_i have degree 1, we are done. Otherwise, let P_0 be an irreducible multiplier of P over K_j of degree d > 0. Take $K_{j+1} := K_j[t]/P_0$. Prove that it is a field. Prove that the sequence $K_l \supset K_{l-1} \supset \cdots \supset K_1$ terminates and gives a field $K \supset k$.

Definition 7.2. This field is called **the splitting field** of a polynomial *P*.

Issued 20.05.2019

– 1 –

Exercise 7.5. Let K be the splitting field for a polynomial $P(t) \in k[t]$. Prove that K is isomorphic to the subfield in an algebraic closure \bar{k} generated by all roots of P.

Exercise 7.6. Suppose that all roots of an irreducible polynomial P(t) are pairwise distinct. Prove that the splitting field of P(t) is the minimal extension of P(t) containing the field k[t]/(P).

Exercise 7.7. Let P(t) be a polynomial of degree n, and d the degree of its splitting field. Prove that $d \leq n!$.

Exercise 7.8. Let $P \in k[t]$ be a degree *n* polynomial which has *n* pairwise distinct roots in the algebraic closure of *k*. Let [K:k] be its splitting field, and $K_l \supset K_{l-1} \supset \cdots \supset K_1$ the corresponding chain of extensions. Prove that $K \otimes_{K_{i-1}} K_i$ is isomorphic to a direct sum of several copies of *K*.

Hint. Deduce this from Exercise 7.1.

Exercise 7.9. Let $P \in k[t]$ be a degree *n* polynomial which has *n* pairwise distinct roots in the algebraic closure of *k*, and *K* its splitting field. Prove that [K:k] is a Galois extension.

Hint. Use the previous exercise and apply induction.

Exercise 7.10. Let $a_1, ..., a_n$ be integers. Prove that $\mathbb{Q}[\sqrt{a_1}, ..., \sqrt{a_n}]$ is a direct sum of Galois extensions.

7.2 Artin's primitive element theorem

Exercise 7.11. Let $R := \bigoplus^n K$ be a direct sum of several copies of a field K. Prove that any subalgebra $A \subset R$ contains a unity (which might be distinct from the unity in R).

Hint. Prove that A is semisimple and show that it is a direct sum of fields.

Exercise 7.12. Prove that subalgebras of $R := \bigoplus^n K$ are in (1,1)-correspondence with idempotents of R.

Exercise 7.13. Prove that $\oplus^n K$ has precisely n! idempotents.

Exercise 7.14. Prove that $\oplus^n K$ has finitely many different subalgebras.

Issued 20.05.2019

-2 -

Exercise 7.15. Let [K : k] be a finite extension in characteristic 0. Prove that there exists a Galois extension [K' : k] containing K.

Exercise 7.16. Let [K:k] be a finite extension, [K':k] a Galois extension containing K, and $k' \subset K$ a subfield containing k. Prove that $k' \otimes_k K'$ is a subalgebra in $K' \otimes_k K' = \bigoplus^n K'$. Prove that different subfields k' give different subalgebras in $\bigoplus^n K'$.

Exercise 7.17 (!). Let [K : k] be a finite extension, char k = 0. Prove that there are only finitely many intermediate extensions $k \subset k' \subset K$.

Hint. Use the previous exercise and Exercise 7.14.

Exercise 7.18 (!). Let k be a field of characteristic 0, V a finitely-dimensional vector space, and $V_1, ..., V_n \subset V$ a family of subspaces of positive codimension. Prove that $\bigcup_i V_i \neq V$.

Exercise 7.19 (!). Let [K : k] be a finite extension, char k = 0, and $k_1, ..., k_n$ all intermediate subfields $k \subset k_i \subsetneq K$. Prove that $\bigcup_i k_i \neq K$.

Hint. Use the previous exercise.

Definition 7.3. Let [K : k] be a field extension. An element $\alpha \in K$ is called **primitive** if it generates K.

Exercise 7.20 (!). (Artin's primitive element theorem) Prove that any finite extension [K:k] in characteristic 0 is generated by a primitive element.

Hint. Use the previous exercise.

Exercise 7.21 (*). Construct a finite extension [K : k] in char = p such that K does not contain a primitive element.

Exercise 7.22. Let $k := \mathbb{Q}[\sqrt{2}, \sqrt{3}]$. Prove that it is a field. Find whether $\sqrt{2} + \sqrt{3}$ is a primitive element in $[k : \mathbb{Q}]$ or not.

Exercise 7.23 (*). Let $a_1, ..., a_n$ be integers, such that $K := \mathbb{Q}[\sqrt{a_1}, ..., \sqrt{a_n}]$ is a field. Find whether $\sum_i \sqrt{a_i}$ is a primitive element in $[k : \mathbb{Q}]$ or not.

Issued 20.05.2019

– 3 –