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Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V −→ V an automor-

phism which satisfies I2 = − IdV . Such an automorphism is called a complex

structure operator on V .

We extend the action of I on the tensor spaces V ⊗V ⊗...⊗V ⊗V ∗⊗V ∗⊗...⊗
V ∗ by multiplicativity: I(v1⊗...⊗w1⊗...⊗wn) = I(v1)⊗...⊗I(w1)⊗...⊗I(wn).

Trivial observations:

1. The eigenvalues αi of I are ±
√
−1 . Indeed, α2

i = −1.

2. V admits an I-invariant, positive definite scalar product (“metric”)

g. Take any metric g0, and let g := g0 + I(g0).

3. I is orthogonal for such g.

Indeed, g(Ix, Iy) = g0(x, y) + g0(Ix, Iy) = g(x, y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

5. There are as many
√
−1-eigenvalues as there are −

√
−1-eigenvalues.
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Comples structure operator in coordinates

This implies that in an appropriate basis in V ⊗R C, the almost complex
structure operator is diagonal, as follows:



√
−1 √

−1
.. . √

−1

0

0

−
√
−1

−
√
−1

.. .
−
√
−1


We also obtain its normal form in a real basis:

0 −1
1 0

0 −1
1 0

.. .
. . .

0 −1
1 0


3



Complex Variables I, lecture 1 M. Verbitsky

The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by ΛiV the space of an-

tisymmetric polylinear i-forms on V ∗, and let Λ∗V :=
⊕

ΛiV . Denote by

T⊗iV the algebra of all polylinear i-forms on V ∗ (“tensor algebra”), and let

Alt : T⊗iV −→ ΛiV be the antisymmetrization,

Alt(η)(x1, ..., xi) :=
1

i!

∑
σ∈Σi

(−1)σ̃η(xσ1, ..., xσi)

where Σi is the group of permutations, and σ̃ = 1 for odd permutations, and

0 for even. Consider the multiplicative operation (“wedge-product”) on Λ∗V ,

denoted by η ∧ ν := Alt(η ⊗ ν). The space Λ∗V with this operation is called

the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.

Properties of Grassmann algebra:

1. dim ΛiV :=
(

dimV
i

)
, dim Λ∗V = 2dimV .

2. Λ∗(V ⊕W ) = Λ∗(V )⊗ Λ∗(W ).
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The Hodge decomposition in linear algebra

DEFINITION: Let (V, I) be a space equipped with a complex structure.

The Hodge decomposition V ⊗R C := V 1,0 ⊕ V 0,1 is defined in such a way

that V 1,0 is a
√
−1 -eigenspace of I, and V 0,1 a −

√
−1 -eigenspace.

REMARK: Let VC := V ⊗R C. The Grassmann algebra of skew-symmetric

forms ΛnVC := ΛnRV ⊗R C admits a decomposition

ΛnVC =
⊕

p+q=n

ΛpV 1,0 ⊗ ΛqV 0,1

We denote ΛpV 1,0 ⊗ ΛqV 0,1 by Λp,qV . The resulting decomposition ΛnVC =⊕
p+q=nΛp,qV is called the Hodge decomposition of the Grassmann al-

gebra.
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De Rham algebra

DEFINITION: Let M be a smooth manifold. A bundle of differential

i-forms on M is the bundle ΛiT ∗M of antisymmetric i-forms on TM . It is

denoted ΛiM .

REMARK: Λ0M = C∞M .

DEFINITION: Let
⊗
k T
∗M Π−→ ΛkM be the antisymmetrization map,

Π(α)(x1, ..., xn) :=
1

n!

∑
σ∈Symn

(−1)σα(xσ1, xσ2, ..., xσn).

Define the exterior multiplication ∧ : ΛiM × ΛjM −→ Λi+jM as α ∧ β :=

Π(α⊗ β), where α⊗ β is a section ΛiM ⊗ ΛjM ⊂
⊗
i+j T

∗M obtained as their

tensor multiplication.

REMARK: The fiber of the bundle Λ∗M at x ∈ M is identified with the

Grassmann algebra Λ∗T ∗xM. This identification is compatible with the Grass-

mann product.
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De Rham differential

THEOREM: There exists a unique operator C∞M d−→ Λ1M
d−→ Λ2M

d−→
Λ3M

d−→ ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d2 = 0

3. d(η ∧ ξ) = d(η)∧ ξ+ (−1)η̃η ∧ d(ξ), where η̃ = 0 where η ∈ λ2iM is an

even form, and η ∈ λ2i+1M is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form η is called closed if dη = 0, exact if η ∈ im d. The

group ker d
im d is called de Rham cohomology of M .
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Holomorphic functions

DEFINITION: Let U ⊂ Cn be an open subset, and f : U −→ C a function of

class C1 (differentiable at least once). We say that f is holomorphic if the

differential df : TxU −→ C is complex linear at each x ∈ U .

REMARK: Clearly, f is holomorphic if and only if df ∈ Λ1,0(U), where Λ1,0(U)

is the Hodge (1,0)-component of the de Rham algebra.

Taylor series decomposition for holomorphic functions in 1 variable is

implied by the Cauchy formula: for any folomorphic function f in disk

∆ ⊂ C, ∫
∂∆

f(z)dz

z − a
= 2π

√
−1 f(a),

where a ∈∆ any point, and z coordinate on C. Indeed, in this case,

2π
√
−1 f(a) =

∑
i>0

ai
∫
∂∆

f(z)(z−1)i+1,

because 1
z−a = z−1∑

i>0(az−1)i.
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Cauchy formula in dimension 1

Let’s prove Cauchy formula, using Stokes’ theorem. Since the space Λ1,0C is
1-dimensional, df ∧ dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disk ∆ ⊂ C is holomorphic if and only if the form
η := fdz is closed (that is, satisfies dη = 0).

Now, let Sε be a radius ε circle around a point a ∈ ∆, ∆ε its interior, and
∆0 := ∆\∆ε. Stokes’ theorem gives

0 =
∫

∆0

d

(
f(z)dz

z − a

)
= −

∫
Sε

f(z)dz

z − a
+
∫
∂∆

f(z)dz

z − a
,

hence Cauchy formula would follow if we show that lim
ε→0

∫
Sε

f(z)dz
z−a = 2π

√
−1f(a).

Assuming for simplicity a = 0 and parametrizing the circle Sε by εe
√
−1 t, we

obtain∫
Sε

f(z)dz

z
=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

d(εe
√
−1 t) =

=
∫ 2π

0

f(εe
√
−1 t)

εe
√
−1 t

√
−1 εe

√
−1 tdt =

∫ 2π

0
f(εe

√
−1 t)

√
−1 dt

as ε tends to 0, f(εe
√
−1 t) tends to f(0), and this integral goes to 2π

√
−1f(0).
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Holomorphic functions on Cn

THEOREM: Let f : U −→ C be a differentiable function on an open subset
U ⊂ Cn. Then the following are equivalent.
(1) f is holomorphic.
(2) For any complex affine line L ∈ Cn, the restriction f |L = C is holomorphic
as a function of one complex variable.
(3) f is expressed as a sum of Taylor series around any point (z1, ..., zn) ∈
U : for all sufficiently small t1, ..., tn, one has f(z1 + t1, z2 + t2, ..., zn + tn) =∑
i1,...,in ai1,...,int

i1
1 t

i2
2 ...t

in
n .

Proof: Equivalence of (1) and (2) is clear, because a restriction of θ ∈ Λ1,0(M)
to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on
each complex line, it is of type (1,0) on TM , which is implied by the following
linear-algebraic observation.

LEMMA: Let η ∈ V ∗ ⊗ C be a complex-valued linear form on a real vector
space (V, I) equipped with a complex structure I. Then η ∈ Λ1,0(V ) if
and only if its restriction to any I-invariant 2-dimensional subspace L
belongs to Λ1,0(L).
EXERCISE: Prove it.

(3) clearly implies (1). (1) implies (3) by Cauchy formula (many variables),
proven below.
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Cauchy formula (many variables)

REMARK: Let U ⊂ Cn be an open subset, and z1, ..., zn complex coordinates.

Holomorphicity of f : U −→ C is equivalent to df ∈ Λ1,0(M), which is equiva-

lent to df ∧ dz1 ∧ dz1 ∧ ...∧ dzn = 0. Denote the form dz1 ∧ dz1 ∧ ...∧ dzn by Φ.

We obtain that f is holomorphic if and only if the form fΦ is closed

THEOREM: (Cauchy formula in dimension n)

Let ∆ ⊂ Cn be a polydisk (product of disks) of radius 1, and α1, ..., αn ∈ ∆

complex numbers. Denote by S ⊂ Cn the product of circles of radius 1 in

variables z1, ..., zn:, S = S1(z1)× S1(z2)× ...× S1(zn). Let f be a holomorphic

function in a polydisk. Then
∫
S V = (2π

√
−1 )nf(α1, ...αn), where

V =
fΦ

(z1 − α1)(z2 − α2)× ...× (zn − αn)
.

Proof. Step 1: Denote by Z the set
⋃n
i=1{(z1, ..., zn) | zi = αi}. The comple-

ment of Z is the set of definition of the closed differential form V . Let Sε be

the product of circles of radius ε with center in α1, ..., αn. Then S, Sε ⊂ Cn\Z,

and the tori S, Sε are homotopy equivalent in the domain Cn\Z, where

V is closed. It remains to show that limε→0
∫
Sε V = (2π

√
−1 )nf(α1, ...αn).
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Cauchy formula (many variables), part 2

THEOREM: (Cauchy formula in dimension n)
Let ∆ ⊂ Cn be a polydisk (product of disks) of radius 1, and α1, ..., αn ∈ ∆
complex numbers. Denote by S ⊂ Cn the product of circles of radius 1 in
variables z1, ..., zn:, S = S1(z1)× S1(z2)× ...× S1(zn). Let f be a holomorphic
function in a polydisk. Then

∫
S V = (2π

√
−1 )nf(α1, ...αn), where

V =
fΦ

(z1 − α1)(z2 − α2)...(zn − αn)
.

Proof. Step 1: Let Sε be a product of circles of radius ε with center in
α1, ..., αn. It remains to show that limε→0

∫
Sε V = (2π

√
−1 )nf(α1, ...αn).

Step 2: To simplify notation we set αi = 0. Parametrize Sε by the cube
[0,2π]n using the map t1, ..., tn −→ εe

√
−1 t1, ..., εe

√
−1 tn. This gives∫

Sε
V =

∫
Sε
f(z)

dz1

z1
∧ ... ∧

dzn

zn
=

=
∫ 2π

0
...
∫ 2π

0

f(εe
√
−1 t1, εe

√
−1 t2, ..., εe

√
−1 tn)

εe
√
−1 t1εe

√
−1 t2...εe

√
−1 tn

εnd

(
e
√
−1 t1

)
d

(
e
√
−1 t2

)
...d

(
e
√
−1 tn

)
=

= (
√
−1 )n

∫ 2π

0
...
∫ 2π

0
f(εe

√
−1 t1, ..., εe

√
−1 tn)dt1dt2...dtn,

which converges to (2π
√
−1 )nf(0, ...,0).
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Cauchy formula and Taylor expansion

REMARK: Cauchy formula implies that holomorphic functions defined in

a polydisk have Taylor expansion in this polydisk. Indeed,

f(α1, ...αn) =
1

(2π
√
−1 )n

∫
S

fdz1 ∧ ... ∧ dzn
(z1 − α1)(z2 − α2)× ...× (zn − αn)

Take the Taylor expansion of (zi − αi)−1 using

1

(zi − αi)
=

z−1
i

(1− αiz−1
i )

=
∞∑
l=0

αliz
−l−1
i .

Then

f(α1, ...αn) =
∞∑

i1=0

...
∞∑

in=0

α
i1
1 ....α

in
in

∫
Sε
f(z1, ..., zn)z−i1−1

1 ...z−in−1
n dz1 ∧ ... ∧ dzn.
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