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Complex structure on vector spaces

DEFINITION: Let V be a vector space over R, and I : V — V an automor-
phism which satisfies 2 = —Idy,. Such an automorphism is called a complex
structure operator on V.

We extend the action of I on the tensor spaces VRV®...QVRV*QV*®...®
V* by multiplicativity: I1(v1®...Qw1Q®...Qwp) = [(v1)R ... I(w1)X...Q I (wn).

Trivial observations:
1. The eigenvalues «; of I are ++/—1. Indeed, a? = —1.

2. V admits an I-invariant, positive definite scalar product (‘“metric”)
g. Take any metric gg, and let g := go + 1(g0).

3. I is orthogonal for such g.
Indeed, g(Iz,ly) = go(z,y) + go(Uz, Iy) = g(=,y).

4. I diagonalizable over C. Indeed, any orthogonal matrix is diagonalizable.

5. There are as many v —1-eigenvalues as there are —/—1-eigenvalues.
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Comples structure operator in coordinates

This implies that in an appropriate basis in V ®r C, the almost complex
structure operator is diagonal, as follows:

_ — }
v—1
_ 0
v—1
—/—1
—v—1
0
L o _1 -
We also obtain its normal form in a real basis:
o 1 )
1 O
0 —1
1 O
0 -1
1 O
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The Grassmann algebra

DEFINITION: Let V be a vector space. Denote by A'V the space of an-
tisymmetric polylinear i-forms on V*, and let A*V = @A'WV. Denote by
T® the algebra of all polylinear i-forms on V* (“tensor algebra’), and let
Alt : T®'V — A'V be the antisymmetrization,

1 ~
Alt(n) (@1, zi) == > (=1)7n(2oy, ..., To;)
7! cEY;

where 2_; is the group of permutations, and ¢ = 1 for odd permutations, and
O for even. Consider the multiplicative operation ( “wedge-product”) on A*V,
denoted by n Av := Alt(n® v). The space A*V with this operation is called
the Grassmann algebra.

REMARK: It is an algebra of anti-commutative polynomials.
Properties of Grassmann algebra:

1. dim AV = (9TV), dim A*Y = 2dimV,

2. A (VW) = A (V) @ A*(W).
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The Hodge decomposition in linear algebra

DEFINITION: Let (V,I) be a space equipped with a complex structure.
The Hodge decomposition V @i C := V1.0 ¢ V0.1 is defined in such a way
that V1.0 is a /=1 -eigenspace of I, and V%1 a —/—1 -eigenspace.

REMARK: Let Vg := V @r C. The Grassmann algebra of skew-symmetric
forms A"Vp := AgV ®gr C' admits a decomposition

NVe= @ AvIOgAv0!
p+q=n
We denote APV1.0 @ A9Vl by APV The resulting decomposition A"Vp =
Dp+q=n NP4V is called the Hodge decomposition of the Grassmann al-
gebra.
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De Rham algebra

DEFINITION: Let M be a smooth manifold. A bundle of differential
i-forms on M is the bundle A'T*M of antisymmetric i-forms on T'M. It is
denoted A'M.

REMARK: NOM = C>®M.

DEFINITION: Let ®.T*M -5 A*¥M be the antisymmetrization map,

1

MN(a)(xq,...,2n) = — Y (—1)(@oy; Togs ooy Tay)-
n: oceSym,,

Define the exterior multiplication A : AM x ANVM — A'TIM as a A B =
N(a® B), where a® B is a section A'M @ VM C ®;4,; T*M obtained as their
tensor multiplication.

REMARK: The fiber of the bundle A*M at z € M is identified with the
Grassmann algebra A*T; M. This identification is compatible with the Grass-
mann product.
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De Rham differential
THEOREM: There exists a unique operator C°M —% ALy -4 A2y -4
A3 M i> ... satisfying the following properties

1. On functions, d is equal to the differential.

2. d°=0

3. dinAE) =d(n) ANE+ (=1)Ty Ad(E), where 77 = 0 where n € A2PM is an
even form, and n € A2 T1)/ is odd.

DEFINITION: The operator d is called de Rham differential.

DEFINITION: A form n is called closed if dp = 0, exact if n € imd. The

group % is called de Rham cohomology of M.
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Holomorphic functions

DEFINITION: Let U C C" be an open subset, and f: U — C a function of
class C1 (differentiable at least once). We say that f is holomorphic if the
differential df : T, U — C is complex linear at each x € U.

REMARK: Clearly, f is holomorphic if and only if df € ALO(U), where ALO(TD)
is the Hodge (1,0)-component of the de Rham algebra.

Taylor series decomposition for holomorphic functions in 1 variable is
implied by the Cauchy formula: for any folomorphic function f in disk
A C C,

f(z)dz
oA z—a 27“/_—1]0(&)’

where a € A any point, and z coordinate on C. Indeed, in this case,

2my/=1f(a) = Y a' | FEHT

1=>0

because -1 =271¥;50(az"1)"
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Cauchy formula in dimension 1

Let's prove Cauchy formula, using Stokes' theorem. Since the space ALOC is
1-dimensional, df AN dz = 0 for any holomorphic function on C. This gives

CLAIM: A function on a disk A C C is holomorphic if and only if the form
n .= fdz Is closed (that is, satisfies dn =0). =

Now, let S be a radius e circle around a point a € A, Ac its interior, and
Ag = A\A.. Stokes’' theorem gives
o= [ <f<z>dz> _ [ f@d g f()dz
0]

Se z—a ON zZ — a

y
<z — Qa

hence Cauchy formula would follow if we show that Iin% Js. f,(zzf)jz = 27v—1f(a).
E—r

Assuming for simplicity a = 0 and parametrizing the circle Sz by sev_lt, we

obtain

f(2)dz _ p2m fleeV—1t) g,
S. =z _/o ceV/—1t d(ee ) =

B wa(gex/—_lt) STt [2T T
=/ VT v—1c¢e dt—/o f(ee )V —1dt

as e tends to 0, f(eeV~11) tends to f(0), and this integral goes to 2m/—1 f(0).
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Holomorphic functions on C"

THEOREM: Let f: U — C be a differentiable function on an open subset
U C C"*. Then the following are equivalent.

(1) f is holomorphic.

(2) For any complex affine line L € C", the restriction f|; = C is holomorphic
as a function of one complex variable.

(3) f is expressed as a sum of Taylor series around any point (z1,...,2n) €
U:. for all sufficiently small tq,...,tn, One has f(z1 +t1,20 +to,...,2n + tn) =

L 5 L 1 Y
21’17"'77/?1 a?/]_,...,zntl t2 -..tn .

Proof: Equivalence of (1) and (2) is clear, because a restriction of 8 € ALO(a1)
to a line is a (1,0)-form on a line, and, conversely, if df is of type (1,0) on
each complex line, it is of type (1,0) on T'M, which is implied by the following
linear-algebraic observation.

LEMMA: Let n € V*® C be a complex-valued linear form on a real vector
space (V,I) equipped with a complex structure I. Then n € ALO(V) if
and only if its restriction to any /-invariant 2-dimensional subspace L
belongs to ALO(L).

EXERCISE: Prove it.

(3) clearly implies (1). (1) implies (3) by Cauchy formula (many variables),
proven below.
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Cauchy formula (many variables)

REMARK: Let U C C™ be an open subset, and zq, ..., zn, complex coordinates.
Holomorphicity of f: U — C is equivalent to df € ALO(M), which is equiva-
lent to df Adzqy Adz1 A ... Ndzp = 0. Denote the form dzqy Adz1 A ... ANdzp by P.
We obtain that f is holomorphic if and only if the form fd is closed

THEOREM: (Cauchy formula in dimension n)
Let A C C" be a polydisk (product of disks) of radius 1, and aq,...,an € A
complex numbers. Denote by S C C" the product of circles of radius 1 in
variables z1,...,2n:, S = S1(21) x S1(22) X ... x S1(zn). Let f be a holomorphic
function in a polydisk. Then [¢V = (27/—-1)"f(a1,...an), where

fo
(21 —a1)(z2 —a2) X ... X (zn — an)
Proof. Step 1: Denote by Z the set Ul {{(z1,...,2n) | 2; = a;}. The comple-
ment of Z is the set of definition of the closed differential form V. Let Sz be
the product of circles of radius € with center in aq,...,an. Then S, S, C C"*\Z,
and the tori S, S are homotopy equivalent in the domain C"\ 7, where
V is closed. It remains to show that lim._o [¢. V = (2nv/—=1)"f(a1,...an).

V =
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Cauchy formula (many variables), part 2

THEOREM: (Cauchy formula in dimension n)

Let A C C"™ be a polydisk (product of disks) of radius 1, and «aq,...,an € A
complex numbers. Denote by S C C" the product of circles of radius 1 in
variables z1,...,2n:, S = S1(21) x S1(22) X ... x S1(zn). Let f be a holomorphic
function in a polydisk. Then [¢V = (27v/—1)"f(a1,...an), Where

fo

(21 —a1)(22 — a2)...(zn — an)’
Proof. Step 1: Let S: be a product of circles of radius £ with center in
ai, ..., an. It remains to show that lim._,o [¢ V = (27v—=1)"f(aq,...an).

v

Step 2: To simplify notation we set a; = 0. Parametrize S: by the cube
[0, 27]™ using the map tq,...,tn —> eV 11 . geV—1lin This gives

[ V=] 1)

— /027T /02” f(f;/\/_—;lt;z:j:_—llzgef/‘e__\/lj tn)gnd (e\/——”l) d (e\/_—”2> .d (e\/_—lt”) —

27 2m — —
= (v—-1 >n/0 /O f(ee _1t1,...,€€ _1t”)dt1dt2...dtn,

which converges to (27v/—1)"f(0,...,0). =
12
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Cauchy formula and Taylor expansion

REMARK: Cauchy formula implies that holomorphic functions defined in
a polydisk have Taylor expansion in this polydisk. Indeed,

1 fdzq1 N ... Ndzp
(27v/—=1)"JS (21 —a1)(z0 —an) X ... X (zn — an)
Take the Taylor expansion of (z; — ;)1 using

; = ] —1-1
; . g
1N Z Qi z; :
=0

(z; — ;) - (1 —oayz; 7)

flag,...an) =

T hen

flaq,...an) = Z Z ozl / f(z1, ..., zn)z_zl 1 zgi”_ldzl/\.../\dzn.

11=0 ¢p,=0
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